NJM4558/4559

The NJM4558/4559 integrated circuit are a dual high-gain operational amplifier internally compensated and constru -cted on a single silicon chip using an advanced epitaxial process.

Combining the features of the NJM741 with the close parameter matching and tracking of a dual device on a mono -lithic chip results in unique performance characteristics. Excellent channel separation allow the use of the dual device in single NJM741 operational amplifier applications providing density. It is especially well suited for applications in di -fferential-in, differential-out as well as in potentiometric amplifiers and where gain and phase matched channels are ma -ndatory.

- Package Outline
- Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Supply Voltage	$\mathrm{V}^{+} / \mathrm{V}^{-}$	$\pm 18 \mathrm{~V}$
Differential Input Voltage	V_{ID}	$\pm 30 \mathrm{~V}$
Input Voltage (note)	V_{I}	$\pm 15 \mathrm{~V}$
Power Dissipation	P_{D} (D-Type)	500 mW
	(M,V-Type)	300 mW
	(L-Type)	800 mw
Operating Temperature Range	$\mathrm{T}_{\text {opr }}$	$-20 \sim+75^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{sIg}}$	$-40 \sim+125^{\circ} \mathrm{C}$
(note)	For supply voltage less than +15 V, the absolute maximum	
input voltage is equal to the supply voltage.		

Electrical Characteristics ($\mathrm{V}^{+} / \mathrm{V}-= \pm 15 \mathrm{~V}, \mathrm{Ta} 25^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Condition	Min.	Typ.	Max	Unit
Input Offset Voltage	V_{10}	$\mathrm{R}_{\mathrm{s}} \leqq 10 \mathrm{k} \Omega$	-	0.5	6	mV
Input Offset Current	I_{10}		-	5	200	nA
Input Bias Current	I_{B}		-	25	500	nA
Input Resistance	$\mathrm{R}_{\text {IN }}$		0.3	5	-	$\mathrm{M} \Omega$
Large Signal Voltage Gain	A_{y}	$\mathrm{R}_{\mathrm{L}} \geqq 2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	86	100	-	dB
Maximum Output Voltage Swing 1	$\mathrm{V}_{\text {OM1 }}$	$\mathrm{R}_{\mathrm{L}} \geqq 10 \mathrm{k} \Omega$	± 12	± 14	-	V
Maximum Output Voltage Swing 2	$\mathrm{V}_{\text {OM2 }}$	$\mathrm{R}_{\mathrm{L}} \geqq 2 \Omega$	± 10	± 13	-	V
Input Common Mode Voltage Range	VICM		± 12	14	-	V
Common Mode Rejection Ratio	CMR	$\mathrm{Rs} \leqq 10 \mathrm{k} \Omega$	70	90	-	dB
Supply Voltage Rejection Ratio	SVR	RS $\leqq 10 \mathrm{k} \Omega$	76.5	90	-	dB
Supply Current	$\mathrm{I}_{C C}$		-	3.5	5.7	mA
Slew Rate						
NJM4558	SR		-	1	-	$\mathrm{V} / \mu \mathrm{S}$
JM4559	SR		-	2	-	$\mathrm{V} / \mu \mathrm{S}$
Equivalent Input Noise Voltage	V_{NI}	RIAA, $\mathbf{R S}_{\mathbf{S}}=1 \mathrm{k} \Omega, 30 \mathrm{kHz}$ LPF	-	1.4	-	$\mu \mathrm{Vrms}$
Unity Gain Bandwidth	GB					
NJM4558				3		MHz
NJM4559				6		MHz

Equivalent Circuit (1/2 Shown)

- Connection Diagram

D,M,V-Type

L-Type

- Typical Characteristics

Supply Current vs. Temperature

Maximum Output Voltage Swing
vs. Temperature

- Typical Characteristics

Input Bias Current vs. Temperature

Maximum Output Voltage Swing
vs. Supply Voltage
($\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \quad \mathrm{Ta}=25^{\circ} \mathrm{C}$)

Supply Current vs. Supply Voltage

