

PRODUCT CODE SYSTEM

The part number, comprising 14 digits, is formed as follows:

Digit 1 to 3 Series code.
Digit 4 d.c. rated voltage:
$\mathrm{I}=250 \mathrm{~V} \quad \mathrm{M}=400 \mathrm{~V} \quad \mathrm{P}=630 \mathrm{~V}$
Digit 5
Pitch:
$D=7.5 \mathrm{~mm} ; F=10 \mathrm{~mm} ; I=15 \mathrm{~mm} ; N=22.5 \mathrm{~mm}$; $\mathrm{R}=27.5 \mathrm{~mm} ; W=37.5 \mathrm{~mm}$.
Digit 6 to 9 Digits 7-8-9 indicate the first three digits of Capacitance value and the 6th digit indicates the number of zeros that must be added to obtain the Rated Capacitance in pF .
Digit 10 to 11 Mechanical version and/or packaging (table 1)
Digit 12 Identifies the dimensions and electrical characteristics.
Digit 13 Internal use.
Digit 14 Capacitance tolerance:
$H=2.5 \% ; J=5 \% ; K=10 \%$

MMKP Series
POLYPROPYLENE CAPACITOR WITH DOUBLE SIDED METALLIZED FILM ELECTRODES D.C. AND PULSE APPLICATIONS

Typical applications: deflection circuits in TV-sets (S-correction and fly-back tuning) and monitors, switching spikes suppression in SMPS, lamp capacitor for electronic ballast and compact lamps, SNUBBER and SCR commutating circuits, applications with high voltage and high current.
PRODUCT CODE: R76

GENERAL TECHNICAL DATA

Dielectric: polypropylene film.
Plates: double sided metallized polyester film.
Winding: non-inductive type.
Leads: tinned wire.
Protection: plastic case, thermosetting resin filled. Box material is solvent resistant and flame retardant according to UL94 V0.
Marking: manufacturer's logo, series (R76), dielectric code (MKP), capacitance, tolerance, D.C. rated voltage, manufacturing date code.
Climatic category: 55/100/56 IEC 60068-1
Operating temperature range: -55 to $+105^{\circ} \mathrm{C}$
Related documents: IEC 60384-16

Table 1 (for more detailed information, please refer to pages 15 and 16).

Standardpackaging style	Lead length (mm)	Taping style			Ordering code
		$\begin{aligned} & \mathbf{P}_{2} \\ & (\mathrm{~mm}) \end{aligned}$	Fig. (No.)	Pitch (mm)	(Digit 10 to 11)
AMMO-PACK		6.35	1	7.5	DQ
AMMO-PACK		12.70	2	10.0/15.0	DQ
AMMO-PACK		19.05	3	22.5	DQ
REEL ® 355mm		6.35	1	7.5	CK
REEL $\oslash 355 \mathrm{~mm}$		12.70	2	10.0/15.0	GY
REEL $\bigcirc 500 \mathrm{~mm}$		12.70	2	10.0/15.0	CK
REEL © 500mm		19.05	3	22.5/27.5	CK
Loose, short leads	4^{+2}				SE
Loose, long leads ($p \leq 10 \mathrm{~mm}$)	$17^{+1 /-2}$				Z3
Loose, long leads	30^{+5}				40
($\mathrm{p}>15 \mathrm{~mm}$)	$25^{+2 /-1}$				50

Rated Cap.	250Vdc / 180Vac					Max K ${ }_{0}$	Part Number
	B	H	1	p	(V/us)	$\left(V^{2} / \mu s\right)$	
6800pF	3.0	8.0	10.0	7.5	1100	55 E4	R761D1680--3--
8200 pF	3.0	8.0	10.0	7.5	1100	55 E 4	R761D1820--3-
$0.010 \mu \mathrm{~F}$	3.0	8.0	10.0	7.5	1100	55 E4	R761D2100--3--
$0.012 \mu \mathrm{~F}$	3.5	8.5	10.5	7.5	1100	55 E 4	R761D2120--3--
0.015 F	3.5	8.5	10.5	7.5	1100	55 E4	R761D2150--3--
0.018 uF	3.5	8.5	10.5	7.5	1100	55 E4	R76ID2180--3--
0.022uF	4.0	9.0	10.5	7.5	1100	55 E4	R761D2220--3--
$0.027 \mu \mathrm{~F}$	5.0	11.0	10.5	7.5	1100	55 E4	R76ID2270--3--
$0.033 \mu \mathrm{~F}$	5.0	11.0	10.5	7.5	1100	55 E 4	R76ID2330--3--
$0.039 \mu \mathrm{~F}$	6.0	12.0	10.5	7.5	1100	55 E4	R76ID2390--3--
0.047 uF	6.0	12.0	10.5	7.5	1100	55 E4	R76ID2470--3--
$0.027 \mu \mathrm{~F}$	4.0	9.0	13.0	10.0	1000	50 E 4	R76IF 2270--3--
0.033	4.0	9.0	13.0	10.0	1000	50 E4	R76IF 2330--3--
0.039 F	4.0	9.0	13.0	10.0	1000	50 E4	R76IF 2390--3--
0.047 $\mu \mathrm{F}$	5.0	11.0	13.0	10.0	1000	50 E4	R761F 2470--3--
$0.056 \mu \mathrm{~F}$	5.0	11.0	13.0	10.0	1000	50 E4	R761F 2560--3--
$0.068 \mu \mathrm{~F}$	6.0	12.0	13.0	10.0	1000	50 E 4	R761F 2680--3--
$0.082 \mu \mathrm{~F}$	6.0	12.0	13.0	10.0	1000	50 E 4	R761F2820--3--
$0.068 \mu \mathrm{~F}$	5.0	11.0	18.0	15.0	550	28 E 4	7611 2680--3--
$0.082 \mu \mathrm{~F}$	5.0	11.0	18.0	15.0	550	28 E4	R7611 2820--3--
0.10 uF	5.0	11.0	18.0	15.0	550	28 E4	R76II 3100-3--
$0.12 \mu \mathrm{~F}$	6.0	12.0	18.0	15.0	550	28 E4	R76II 3120--3--
0.15 uF	6.0	12.0	18.0	15.0	550	28 E4	R76II 3150--3--
0.18μ	7.5	13.5	18.0	15.0	550	28 E4	R7611 3180-3--
$0.18 \mu \mathrm{~F}$	9.0	12.5	18.0	15.0	550	28 E4	R76II 3180--7--
$0.22 \mu \mathrm{~F}$	7.5	13.5	18.0	15.0	550	28 E4	R76II 3220--3--
$0.22 \mu \mathrm{~F}$	9.0	12.5	18.0	15.0	550	28 E4	R7611 3220-7--
$0.27 \mu \mathrm{~F}$	8.5	14.5	18.0	15.0	550	28 E4	R7611 3270--3--
$0.27 \mu \mathrm{~F}$	9.0	12.5	18.0	15.0	550	28 E4	R76II 3270-7--
$0.33 \mu \mathrm{~F}$	10.0	16.0	18.0	15.0	550	28 E4	R76II 3330--3--
0.33 $\mu \mathrm{F}$	13.0	12.0	18.0	15.0	550	28 E4	R76II 3330-7--
$0.39 \mu \mathrm{~F}$	10.0	16.0	18.0	15.0	550	28 E4	R7611 3390--3--
$0.47 \mu \mathrm{~F}$	11.0	19.0	18.0	15.0	550	28 E 4	R7611 3470--3--

Rated Cap.	250Vdc / 180Vac				$\begin{aligned} & \text { Max } \\ & \mathrm{dv} / \mathrm{dt} \\ & (\mathrm{~V} / \mu \mathrm{s}) \end{aligned}$	Max K \mathbf{K}_{0} (V2/ $/ \mathrm{s}$)	Part Number
	B	H	L	p			
$0.22 \mu \mathrm{~F}$	6.0	15.0	26.5	22.5	250	13 E4	R761N 3220--0--
$0.27 \mu \mathrm{~F}$	6.0	15.0	26.5	22.5	250	13 E4	R76iN 3270--3--
0.33 uF	6.0	15.0	26.5	22.5	250	13 E 4	R76iN 3330--3--
$0.39 \mu \mathrm{~F}$	7.0	16.0	26.5	22.5	250	13 E4	R761N 3390--3--
$0.47 \mu \mathrm{~F}$	7.0	16.0	26.5	22.5	250	13 E 4	R76IN 3470--3--
$0.56 \mu \mathrm{~F}$	8.5	17.0	26.5	22.5	250	13 E4	R76IN 3560--3--
$0.68 \mu \mathrm{~F}$	10.0	18.5	26.5	22.5	250	13 E4	R76IN 3680--3--
$0.82 \mu \mathrm{~F}$	10.0	18.5	26.5	22.5	250	13 E 4	R76IN 3820--3--
$1.0 \mu \mathrm{~F}$	11.0	20.0	26.5	22.5	250	13 E 4	R76IN 4100--3--
$1.2 \mu \mathrm{~F}$	13.0	22.0	26.5	22.5	250	13 E 4	R76IN 4120--3--
$0.82 \mu \mathrm{~F}$	9.0	17.0	32.0	27.5	200	10 E 4	R761R 3820--3--
$1.0 \mu \mathrm{~F}$	11.0	20.0	32.0	27.5	200	10 E 4	R76IR 4100--3--
${ }^{*} 1.2 \mu \mathrm{~F}$	13.0	22.0	32.0	27.5	200	10 E 4	R76IR 4120--3--
${ }^{*} 1.5 \mu \mathrm{~F}$	13.0	22.0	32.0	27.5	200	10 E 4	R76IR 4150--3--
${ }^{*} 1.8 \mu \mathrm{~F}$	15.0	24.5	32.0	27.5	200	10 E 4	R76IR 4180--3--
*2.2 2 F	15.0	24.5	32.0	27.5	200	10 E 4	R76IR 4220--3--
*2.7 $\mu \mathrm{F}$	18.0	33.0	32.0	27.5	200	10 E4	R76IR 4270--3--
*3.3ıF	18.0	33.0	32.0	27.5	200	10 E 4	R76IR 4330--3--
*3.9uF	18.0	33.0	32.0	27.5	200	10 E 4	R761R 4390--3--
* 4.7 uF	22.0	37.0	32.0	27.5	200	10 E 4	R76IR 4470--3--
5.6uF	19.0	32.0	41.5	37.5	100	5 E 4	R76IW4560--3--
6.84 F	20.0	40.0	41.5	37.5	100	5 E4	R76IW4680--3--
$8.2 \mu \mathrm{~F}$	20.0	40.0	41.5	37.5	100	5 E4	R76IW4820--3--
10.0 $\mu \mathrm{F}$	24.0	44.0	41.5	37.5	100	5 E4	R76IW5100--3--

Mechanical version and packaging (Table 1)
Internal use
Tolerance: $\mathbf{H}(\pm 2.5 \%) ; J(\pm 5 \%) ; K(\pm 10 \%)$

Mechanical version and packaging (Table 1)
Internal use
Tolerance: $\mathrm{H}(\pm 2.5 \%) ; \mathrm{J}(\pm 5 \%) ; \mathrm{K}(\pm 10 \%)$

All dimensions are in mm .

[^0]
MMKP Series
 POLYPROPYLENE CAPACITOR WITH DOUBLE SIDED METALLIZED FILM ELECTRODES. D.C. AND PULSE APPLICATIONS

Rated Cap.	400Vdc / 250Vac**				Max $\mathrm{dv} / \mathrm{dt}$ ($\mathrm{V} / \mu \mathrm{s}$)	Max \mathbf{K}_{0} ($\mathrm{V}^{2} / \mu \mathrm{s}$)	Part Num
	B	H	L	p			
2700pF	3.0	8.0	10.0	7.5	1700	136 E 4	R76MD 1270--3--
3300 pF	3.0	8.0	10.0	7.5	1700	136 E4	R76MD 1330--3--
3900pF	3.0	8.0	10.0	7.5	1700	136 E4	R76MD 1390--3--
pF	3.0	8.0	10.0	7.5	1700	136 E4	R76MD 1470--3--
600p	3.0	8.0	10.0	7.5	1700	136 E4	76MD 1560--3--
6800p	3.5	8.5	10.5	7.5	1700	136 E4	R76MD 1680--3--
8200pF	3.5	8.5	10.5	7.5	1700	136 E4	R76MD 1820--3--
0.010 μ	3.5	8.5	10.5	7.5	1700	136 E4	R76MD2100--3--
0.012	4.0	9.0	10.5	7.5	1700	136 E4	R76MD2120--3--
0.015 μ	5.0	11.0	10.5	7.5	1700	136 E4	R76MD2150--3--
$0.018 \mu \mathrm{~F}$	5.0	11.0	10.5	7.5	1700	136 E 4	R76MD2180--3--
0.022 μ	6.0	12.0	10.5	7.5	1700	136 E4	R76MD2220--3--
$0.027 \mu \mathrm{~F}$	6.0	12.0	10.5	7.5	1700	136 E4	R76MD2270--3--
$0.010 \mu \mathrm{~F}$	4.0	9.	13.0	10	1500	120	6M
$0.012 \mu \mathrm{~F}$	4.0	9.0	13.0	10	1500	120 E4	R76MF 2120--0--
0.015	4.0	9.0	13.0	10.0	1500	120 E4	R76MF 2150--3--
0.018μ	4.0	9.0	13.0	10.0	1500	120 E4	R76MF 2180--3--
0.022μ	4.0	9.0	13.0	10.0	1500	120 E4	R76MF 2220--3--
0.027 μ	5.0	11.0	13.0	10.0	1500	120 E4	R76MF 2270--3--
0.033 μ	5.0	11.0	13.0	10.0	1500	120 E 4	R76MF 2330-3--
0.039μ	6.0	12.0	13.0	10.0	1500	120 E4	R76MF 2390--3--
$0.047 \mu \mathrm{~F}$	6.0	12.0	13.0	10.0	1500	120 E4	R76MF 2470--3--
0.033μ	5.0	11.0	18.0	15.	900	72 E 4	6M1 2330
0.039	5.0	11.0	18.0	15	900	72 E4	R76MI 2390--3--
0.047μ	5.0	11.0	18.0	15	900	72 E	6MI 2470--3--
0.056μ	5.0	11.0	18.0	15.	900	72 E 4	R76MI 2560--3--
0.068	6.0	12.0	18.0	15.0	900	72 E 4	R76MI 2680--3--
0.082 $\mu \mathrm{F}$	6.0	12.0	18.0	15.0	900	72 E 4	R76MI 2820--3--
0.10	7.5	13.5	18	15.0	900	72 E 4	R76MI 3100-3--
0.1	9.0	12.5	18.0	15.0	900	72 E 4	6MI 3100-7--
0.12μ	7.5	13.5	18.0	15.0	900	72 E4	R76M1 3120--3--
$0.12 \mu \mathrm{~F}$	9.0	12.5	18.0	15.0	900	72 E 4	R76MI 3120--7--
0.15μ	8.5	14	18	15	900	72 E 4	R76MI 3150--3--
0.15μ	13.0	12.0	18.0	15.0	900	72 E 4	R76MI 3150--7-
0.18	10.0	16.0	18.0	15.0	900	72 E 4	R76M1 3180--3--
0.18 FF	13.0	12.0	18.0	15.0	900	72 E 4	R76MI 3180--7--
$0.22 \mu \mathrm{~F}$	10.0	16.0	18.0	15.0	900	72 E 4	R76MI 3220--3--
$0.27 \mu \mathrm{~F}$	11.0	19.0	18.0	15.0	900	72 E4	R76MI 3270-3--

Rated Cap.	400Vdc / 250Vac**				Max dv/dt (V/us)	Max $K_{0}$$\left(\mathrm{V}^{2} / \mu \mathrm{s}\right)$	Part Number
	B	H	L	p			
$0.12 \mu \mathrm{~F}$	6.0	15.0	26.5	22.5	500	40 E4	R76MN 3120-3--
$0.15 \mu \mathrm{~F}$	6.0	15.0	26.5	22.5	500	40 E4	R76MN 3150--3--
$0.18 \mu \mathrm{~F}$	6.0	15.0	26.5	22.5	500	40 E4	R76MN 3180--3--
$0.22 \mu \mathrm{~F}$	7.0	16.0	26.5	22.5	500	40 E4	R76MN 3220-3--
0.27 LF	8.5	17.0	26.5	22.5	500	40 E4	R76MN 3270--3--
$0.33 \mu \mathrm{~F}$	8.5	17.0	26.5	22.5	500	40 E4	R76MN 3330-3--
$0.39 \mu \mathrm{~F}$	10.0	18.5	26.5	22.5	500	40 E4	R76MN 3390--3--
$0.47 \mu \mathrm{~F}$	10.0	18.5	26.5	22.5	500	40 E4	R76MN 3470-3--
$0.56 \mu \mathrm{~F}$	11.0	20.0	26.5	22.5	500	40 E4	R76MN 3560--3--
$0.68 \mu \mathrm{~F}$	13.0	22.0	26.5	22.5	500	40 E4	R76MN 3680--3--
$0.39 \mu \mathrm{~F}$	9.0	17.0	32.0	27.5	300	24 E4	R76MR 3390--3--
$0.47 \mu \mathrm{~F}$	9.0	17.0	32.0	27.5	300	24 E4	R76MR 3470--3--
$0.56 \mu \mathrm{~F}$	11.0	20.0	32.0	27.5	300	24 E4	R76MR 3560--3--
$0.68 \mu \mathrm{~F}$	11.0	20.0	32.0	27.5	300	24 E4	R76MR 3680--3--
$0.82 \mu \mathrm{~F}$	13.0	22.0	32.0	27.5	300	24 E4	R76MR 3820--3--
*1.0رF	15.0	24.5	32.0	27.5	300	24 E4	R76MR 4100-3--
* $1.2 \mu \mathrm{~F}$	15.0	24.5	32.0	27.5	300	24 E4	R76MR 4120-3--
*1.5 $\mu \mathrm{F}$	18.0	33.0	32.0	27.5	300	24 E4	R76MR 4150-3-3
* $1.8 \mu \mathrm{~F}$	18.0	33.0	32.0	27.5	300	24 E4	R76MR 4180-3--
	22.0	37.0	32.0	27.5	300	24 E4	R76MR 4220-3--
*2.7 $\mu \mathrm{F}$	22.0	37.0	32.0	27.5	300	24 E4	R76MR 4270-3--
$3.3 \mu \mathrm{~F}$	19.0	32.0	41.5	37.5	180	14 E4	R76MW4330-3--
3.9uF	20.0	40.0	41.5	37.5	180	14 E4	R76MW4390--3--
$4.7 \mu \mathrm{~F}$	20.0	40.0	41.5	37.5	180	14 E4	R76MW4470-3--
$5.6 \mu \mathrm{~F}$	24.0	44.0	41.5	37.5	180	14 E 4	R76MW4560-3--

Mechanical version and packaging (Table 1)
Internal use
Tolerance: $\mathrm{H}(\pm 2.5 \%) ; \mathrm{J}(\pm 5 \%) ; \mathrm{K}(\pm 10 \%)$

Mechanical version and packaging (Table 1)
Internal use
Tolerance: $\mathrm{H}(\pm 2.5 \%) ; \mathrm{J}(\pm 5 \%) ; \mathrm{K}(\pm 10 \%)$
All dimensions are in mm .
Note: If the working voltage (V) is lower than the rated voltage $\left(\mathrm{V}_{\mathrm{R}}\right)$, the capacitor may work at higher $\mathrm{dv} / \mathrm{dt}$. In this case the maximum value allowed is obtained multiplying the above value (see table dv/dt) with the ratio $\mathrm{V}_{\mathrm{R}} N$. The pulse characteristic K_{0} depends on the voltage wave-form and in any case it cannot overcome the value given in the above table.
The dv/dt test is carried out at 2 times the above values.

* These values are available in pitch 37.5 mm upon request.
${ }^{* *}$ Not suitable for across-the-line applications. Please refer to Interference Suppression Capacitors (page 109).

POLYPROPYLENE CAPACITOR WITH DOUBLE SIDED METALLIZED FILM ELECTRODES. D.C. AND PULSE APPLICATIONS

PRODUCT CODE: R76

1 section ($630 \mathrm{Vdc} / 250 \mathrm{Vac}$)						double sided metallized polyester carrier film polypropylene film dielectric	
			da				Part Number
	B	H	L	p	(V/ / ${ }^{\text {s }}$)	(v2/us)	
OpF	3.0	8.0	10.0	7.5	2800	353 E4	R76PD0680-0--
820pF	3.0	0	10.0	7.5	2800	35	R76P
1000pF	3.0	8.0	10.0	7.5	280	353 E4	R76PD1100-0--
1200pF	3.0	8.0	10.0	7.5	2800	353 E4	R76
1500pF	3.0	8.0	10.0	7.5	2800	353 E	R76PD1150--0--
1800pF	3.0	8.0	10.0	7.5	2800	353	R76PD1180-0
2200pF	3.0	8.0	10.0	7.5	2800	353 E4	R76PD1220-0--
2700pF	3.5	8.5	10.5	7.5	2800	353 E4	R76PD1
3300pF	3.5	8.5	10.5	7.5	2800	35	R76
3900pF	3.5	8.5	10.5	7.5	2800	353 E4	R76PD1390--3-
4700pF	4.0	9.0	10.5	7.5	280	353 E	R76PD
5600pF	4.0	9.0	10.5	7.5	2800	353 E4	R76PD1560-3--
6800pF	5.0	11.0	10.5	7.5	2800	353 E4	R76PD1680-3--
8200pF	5.0	11.0	10.5	7.5	2800	353 E4	R76PD1820-3--
0.010 FF	6.0	12.0	10.5	7.5	2800	353 E4	R76PD2100--3
$0.012 \mu \mathrm{~F}$	6.0	12.0	10.5	7.5	2800	353 E 4	R76

Mechanical version and packaging (Table 1)
Internal use
Tolerance: $\mathrm{H}(\pm 2.5 \%)$ for $\mathrm{C} \geqslant 1000 \mathrm{pF} ; \mathrm{J}(\pm 5 \%) ; \mathrm{K}(\pm 10 \%)$

All dimensions are in mm.
Note: If the working voltage (V) is lower than the rated voltage $\left(V_{R}\right)$, the capacitor may work at higher dv/dt. In this case the maximum value allowed is obtained multiplying the above value (see table $\mathrm{dv} / \mathrm{dt}$) with the ratio $V_{R} N$. The pulse characteristic K_{0} depends on the voltage wave-form and in any case it cannot overcome the value given in the above table. The $\mathrm{dv} / \mathrm{dt}$ test is carried out at 2 times the above values.

* These values are available in pitch 37.5 mm upon request.
** Not suitable for across-the-line applications. Please refer to Interference Suppression Capacitors (page109).

Rated Cap.	630Vdc / 400Vac				Max $d v / d t$ (V/us)	$\begin{aligned} & \operatorname{Max~K}_{0} \\ & \left(V^{2} / \mu s\right) \end{aligned}$	Part Number
	B	H	L	p			
3900 pF	4.0	9.0	13.0	10.0	3000	378 E4	R76PF1390-0--
4700pF	4.0	9.0	13.0	10.0	3000	378 E4	R76PF1470-0--
5600 pF	4.0	9.0	13.0	10.0	3000	378 E4	R76PF1560-0--
6800 pF	4.0	9.0	13.0	10.0	3000	378 E4	R76PF1680--0--
8200pF	4.0	9.0	13.0	10.0	3000	378 E4	R76PF1820--0--
$0.010 \mu \mathrm{~F}$	5.0	11.0	13.0	10.0	3000	378 E4	R76PF2100-3--
$0.012 \mu \mathrm{~F}$	5.0	11.0	13.0	10.0	3000	378 E4	R76PF2120--3--
$0.015 \mu \mathrm{~F}$	6.0	12.0	13.0	10.0	3000	378 E4	R76PF2150--3--
$0.018 \mu \mathrm{~F}$	6.0	12.0	13.0	10.0	3000	378 E4	R76PF2180--3--
$0.012 \mu \mathrm{~F}$	5.0	11.0	18.0	15.0	2500	315 E4	R76PI 2120-0--
0.015 uF	5.0	11.0	18.0	15.0	2500	315 E4	76 Pl 2150-0--
$0.018 \mu \mathrm{~F}$	5.0	11.0	18.0	15.0	2500	315 E4	R76PI 2180-0--
0.022uF	5.0	11.0	18.0	15.0	2500	315 E4	R76PI 2220--3--
$0.027 \mu \mathrm{~F}$	5.0	11.0	18.0	15.0	2500	315 E4	R76PI 2270--3--
$0.033 \mu \mathrm{~F}$	6.0	12.0	18.0	15.0	2500	315 E4	R76PI 2330--3--
$0.039 \mu \mathrm{~F}$	6.0	12.0	18.0	15.0	2500	315 E4	R76PI 2390--3--
$0.047 \mu \mathrm{~F}$	7.5	13.5	18.0	15.0	2500	315 E4	R76PI 2470-3--
$0.047 \mu \mathrm{~F}$	9.0	12.5	18.0	15.0	2500	315 E4	R76PI 2470--7--
$0.056 \mu \mathrm{~F}$	7.5	13.5	18.0	15.0	2500	315 E4	R76PI 2560-3--
$0.056 \mu \mathrm{~F}$	9.0	12.5	18.0	15.0	2500	315 E4	R76PI 2560--7--
$0.068 \mu \mathrm{~F}$	8.5	14.5	18.0	15.0	2500	315 E4	R76PI 2680-3--
$0.068 \mu \mathrm{~F}$	9.0	12.5	18.0	15.0	2500	315 E4	R76PI 2680--7--
$0.082 \mu \mathrm{~F}$	8.5	14.5	18.0	15.0	2500	315 E4	R76Pl 2820--3--
$0.082 \mu \mathrm{~F}$	13.0	12.0	18.0	15.0	2500	315 E4	R76PI 2820--7--
$0.10 \mu \mathrm{~F}$	10.0	16.0	18.0	15.0	2500	315 E4	R76PI 3100--3--
$0.12 \mu \mathrm{~F}$	11.0	19.0	18.0	15.0	2500	315 E4	R76PI 3120-3-3-
$0.047 \mu \mathrm{~F}$	6.0	15.0	26.5	22.5	1500	189 E 4	R76PN 2470
$0.056 \mu \mathrm{~F}$	6.0	15.0	26.5	22.5	1500	189 E 4	R76PN 2560-0--
$0.068 \mu \mathrm{~F}$	6.0	15.0	26.5	22.5	1500	189 E 4	R76PN 2680--0--
$0.082 \mu \mathrm{~F}$	6.0	15.0	26.5	22.5	1500	189 E4	R76PN 2820--3--
$0.10 \mu \mathrm{~F}$	6.0	15.0	26.5	22.5	1500	189 E4	R76PN 3100--3--
$0.12 \mu \mathrm{~F}$	7.0	16.0	26.5	22.5	1500	189 E 4	R76PN3120--3--
$0.15 \mu \mathrm{~F}$	8.5	17.0	26.5	22.5	1500	189 E4	R76PN 3150--3--
$0.18 \mu \mathrm{~F}$	8.5	17.0	26.5	22.5	1500	189 E4	R76PN 3180--3--
$0.22 \mu \mathrm{~F}$	10.0	18.5	26.5	22.5	1500	189 E4	R76PN 3220--3--
$0.27 \mu \mathrm{~F}$	11.0	20.0	26.5	22.5	1500	189 E4	R76PN 3270--3--
$0.33 \mu \mathrm{~F}$	11.0	20.0	26.5	22.5	1500	189 E4	R76PN 3330--3--
$0.39 \mu \mathrm{~F}$	13.0	22.0	26.5	22.5	1500	189 E4	R76PN 3390--3--
$0.15 \mu \mathrm{~F}$	9.	17.0	32.0	27.5	900	113 E4	R76PR 3150--3--
$0.18 \mu \mathrm{~F}$	9.0	17.0	32.0	27.5	900	113 E4	R76PR 3180--3--
$0.22 \mu \mathrm{~F}$	9.0	17.0	32.0	27.5	900	113 E4	R76PR 3220--3--
$0.27 \mu \mathrm{~F}$	9.0	17.0	32.0	27.5	900	113 E4	R76PR 3270--3--
${ }^{*} 0.33 \mu \mathrm{~F}$	10.0	20.0	32.0	27.5	900	113 E4	R76PR 3330--3--
${ }^{*} 0.39 \mu \mathrm{~F}$	11.0	20.0	32.0	27.5	900	113 E4	R76PR 3390--3--
${ }^{*} 0.47 \mu \mathrm{~F}$	13.0	22.0	32.0	27.5	900	113 E4	R76PR 3470--3--
${ }^{*} 0.56 \mu \mathrm{~F}$	13.0	22.0	32.0	27.5	900	113 E4	R76PR 3560--3--
*0.68uF	15.0	24.5	32.0	27.5	900	113 E4	R76PR 3680--3--
${ }^{*} 0.82 \mu \mathrm{~F}$	14.0	28.0	32.0	27.5	900	113 E4	R76PR 3820--3--
*1.0 $\mu \mathrm{F}$	18.0	33.0	32.0	27.5	900	113 E4	R76PR 4100--3--
${ }^{*} 1.2 \mu \mathrm{~F}$	18.0	33.0	32.0	27.5	900	113 E4	R76PR 4120--3--
*1.5uF	22.0	37.0	32.0	27.5	900	113 E4	R76PR 4150--3--
${ }^{*} 1.8 \mu \mathrm{~F}$	22.0	37.0	32.0	27.5	900	113 E4	R76PR 4180--3--
$2.2 \mu \mathrm{~F}$	20.0	40.0	41.5	37.5	450	56 E4	R76PW4220--3--
$2.7 \mu \mathrm{~F}$	20.0	40.0	41.5	37.5	450	56 E4	R76PW4270--3--
3.3uF	24.0	44.0	41.5	37.5	450	56 E 4	R76PW4330--3--

[^1]

Rated Cap.	1000Vde/400Vac				Max dv/dt		Part Number
	B	H	L	p	(V/ $/$ s)	$\left(V^{2} / \mu s\right)$	
470pF	3.0	8.0	10.0	7.5	6000	1200 E4	R76QD0470--0--
560pF	3.0	8.0	10.0	7.5	6000	1200 E4	R76QD0560--0--
680pF	3.5	8.5	10.5	7.5	6000	1200 E4	R76QD0680--0--
820pF	3.5	8.5	10.5	7.5	6000	1200 E4	R760D0820--0--
1000pF	3.5	8.5	10.5	7.5	6000	1200 E4	R76QD1100--0--
1200pF	4.0	9.0	10.5	7.5	6000	1200 E4	R76QD1120--0--
1500pF	5.0	11.0	10.5	7.5	6000	1200 E4	R76QD1150--0--
1800pF	5.0	11.0	10.5	7.5	6000	1200 E4	R760D 1180--0--
2200 pF	5.0	11.0	10.5	7.5	6000	1200 E4	R76QD1220--0--
2700pF	6.0	12.0	10.5	7.5	6000	1200 E4	R76QD1270-0--
3300 pF	6.0	12.0	10.5	7.5	6000	1200 E4	R76QD1330--0--

Rated Cap.	$1000 \mathrm{Vdc} / 600 \mathrm{Vac}$				Max dv/dt		Part
	B	H	L	p	(V/us)	($V^{2} / \mu \mathrm{s}$)	
1000pF	4.0	9.0	13.0	10.0	4800	960 E4	R76QF1100--0--
1200pF	4.0	9.0	13.0	10.0	4800	960 E4	R76QF1120--0--
1500pF	4.0	9.0	13.0	10.0	4800	960 E4	R76QF1150-0--
1800pF	4.0	9.0	13.0	10.0	4800	960 E4	R76QF1180-0--
2200 pF	4.0	9.0	13.0	10.0	4800	960 E4	R76QF1220--0--
2700pF	4.0	9.0	13.0	10.0	4800	960 E4	R76QF1270-0--
3300 pF	4.0	9.0	13.0	10.0	4800	960 E4	R76QF1330-3--
3900 pF	5.0	11.0	13.0	10.0	4800	960 E4	R76QF1390--3--
4700pF	5.0	11.0	13.0	10.0	4800	960 E4	R76QF1470-3--
5600 pF	6.0	12.0	13.0	10.0	4800	960 E4	R76QF1560--3--
6800pF	6.0	12.0	13.0	10.0	4800	960 E4	R76QF1680--3--
8200 pF	5.0	11.0	18.0	15.0	3300	660 E4	R76Q1 1820-0--
$0.010 \mu \mathrm{~F}$	5.0	11.0	18.0	15.0	3300	660 E4	R76Q1 2100--3--
$0.012 \mu \mathrm{~F}$	5.0	11.0	18.0	15.0	3300	660 E4	R76Q1 2120-3--
$0.015 \mu \mathrm{~F}$	6.0	12.0	18.0	15.0	3300	660 E4	R76Q $2150-$-3--
$0.018 \mu \mathrm{~F}$	7.5	13.5	18.0	15.0	3300	660 E4	R76Q1 2180--0--
$0.022 \mu \mathrm{~F}$	7.5	13.5	18.0	15.0	3300	660 E4	R76Q1 2220-3--
$0.022 \mu \mathrm{~F}$	9.0	12.5	18.0	15.0	3300	660 E4	R76Q1 2220--7--
$0.027 \mu \mathrm{~F}$	8.5	14.5	18.0	15.0	3300	660 E4	R76Q1 2270--3--
$0.027 \mu \mathrm{~F}$	9.0	12.5	18.0	15.0	3300	660 E4	R76Q1 2270--7--
$0.033 \mu \mathrm{~F}$	8.5	14.5	18.0	15.0	3300	660 E4	R76Q1 2330--3--
$0.033 \mu \mathrm{~F}$	13.0	12.0	18.0	15.0	3300	660 E4	R76Q1 2330--7--
$0.039 \mu \mathrm{~F}$	10.0	16.0	18.0	15.0	3300	660 E4	R76Q1 2390--3--
$0.047 \mu \mathrm{~F}$	11.0	19.0	18.0	15.0	3300	660 E4	R76Q1 2470--3--

Rated Cap.	1000Vdc/600Va				$\begin{array}{\|c} \hline \begin{array}{c} \text { Max } \\ \mathrm{dv} / \mathrm{dtt} \\ (\mathrm{~V} / \mu \mathrm{s}) \end{array} \end{array}$	$\begin{gathered} \operatorname{Max} K_{0} \\ \left(\mathrm{~V}^{2} / \mu \mathrm{s}\right) \end{gathered}$	Part Number
	B	H	L	p			
0.0274F	6.0	15.0	26.5	22.5	2100	420 E 4	R76QN 2270-0--
0.033 4 F	6.0	15.0	26.5	22.5	2100	420 E 4	R76QN 2330-3--
0.039 uF	6.0	15.0	26.5	22.5	2100	420 E4	R760N 2390--3--
0.047 uF	7.0	6.0	. 5	22.	2100	420 E 4	R76QN 2470-3--
0.056uF	7.0	16.0	6.5	22.5	2100	420 E4	R76QN 2560--3--
0.0684 F	8.5	17.0	26.5	22.5	2100	420 E 4	R76QN 2680--3--
0.082uF	10.0	18.5	26.5	22.5	2100	420 E4	R760N 2820-3--
0.10 F^{2}	10.0	18.5	26.5	22.5	2100	420 E 4	R760N 3100-3--
$0.12 \mu \mathrm{~F}$	11.0	20.0	6.5	22.	2100	420 E4	R76QN 3120-3--
$0.15 \mu \mathrm{~F}$	13.0	22.0	6.5	. 5	2100	420 E4	R76QN 3150-3--
0.10 uF	10.0	20.0	32.0	27.5	1000	200 E4	R76QR 3100--3--
$0.12 \mu \mathrm{~F}$	10	20.0	32.0	27.5	1000	200 E4	R76QR 3120--3--
0.154 F	11.0	20.0	32.0	27.5	1000	200 E4	R76QR 3150--3--
${ }^{0} 0.18 \mu \mathrm{~F}$	13.0	22.0	32.0	27.5	1000	200 E4	R76QR 3180-3--
*0.22uF	13.0	22.0	32.0	27.5	1000	E4	R76QR 3220-3--
*0.27 F	15.0	24.5	32.0	27.5	1000	200 E 4	R76QR 3270-3--
*0.33 $\mu \mathrm{F}$	14.0	28.0	32.0	27.5	1000	200 E4	R76QR 3330--3-
*0.39 F	18.0	33.0	32.0	27.5	1000	200 E4	R760R 3390-3--
*0.47 FF	18.0	33.0	32.0	27.5	1000	200 E4	R760R 3470-3--
*0.56uF	22.0	37.0	32.0	27.5	1000	200 E4	R760R 3560-3--
*0.684F	22.0	37.0	32.0	27.5	1000	200 E4	R76QR 3680--3--
$0.82 \mu \mathrm{~F}$	20.0	0.0	41.5	37.5	500	E4	R760W3820-3--
1.0uF	20.0	40.0	41.5	37.5	500	100 E 4	R760W4100-3---
1.24 F	24.0	44.0	41.5	37.5	500	100 E4	R76QW4120-3--
1.54F	24.0	44.0	41.5	37.5	500	100 E 4	R76QW4150-3--

Mechanical version and packaging (Table 1)
Internal use
Tolerance: $\mathrm{H}(\pm 2.5 \%) ; \mathrm{J}(\pm 5 \%) ; \mathrm{K}(\pm 10 \%)$

Mechanical version and packaging (Table 1)
Internal use
Tolerance: $H(\pm 2.5 \%)$ for $C \geqslant 1000 \mathrm{pF} ; \mathrm{J}(\pm 5 \%) ; \mathrm{K}(\pm 10 \%)$

All dimensions are in mm .
Note: If the working voltage (V) is lower than the rated voltage $\left(V_{R}\right)$, the capacitor may work at higher $\mathrm{dv} / \mathrm{dt}$. In this case the maximum value allowed is obtained multiplying the above value (see table dv/dt) with the ratio $\mathrm{V}_{\mathrm{R}} / N$. The pulse characteristic K_{0} depends on the voltage wave-form and in any case it cannot overcome the value given in the above table.
The dv/dt test is carried out at 2 times the above values.

* These values are available in pitch 37.5 mm upon request.

(1600Vdc)

Rated Cap.	$1600 \mathrm{Vdc} / 650 \mathrm{Vac}$				Max dv/dt (V/ $/ \mathrm{s}$)	$\begin{aligned} & \operatorname{Max} K_{0} \\ & \left(V^{2} / \mu s\right) \end{aligned}$	Part Number
	B	H	L	p			
3300 pF	5.0	11.0	18.0	15.0	6000	1900 E4	R76TI 1330-3--
3900 pF	5.0	11.0	18.0	15.0	6000	1900 E4	R76TI 1390-3--
4700pF	5.0	11.0	18.0	15.0	6000	1900 E4	R76TI 1470-3--
5600pF	5.0	11.0	18.0	15.0	6000	1900 E4	R76TI 1560-3--
6800 pF	5.0	11.0	18.0	15.0	6000	1900 E4	R76TI 1680--3--
8200pF	6.0	12.0	18.0	15.0	6000	1900 E4	R76TI 1820-3--
$0.010 \mu \mathrm{~F}$	6.0	12.0	18.0	15.0	6000	1900 E4	R76TI 2100-3--
$0.012 \mu \mathrm{~F}$	7.5	13.5	18.0	15.0	6000	1900 E4	R76TI 2120-3--
$0.012 \mu \mathrm{~F}$	9.0	12.5	18.0	15.0	6000	1900 E4	R76T1 2120-7--
$0.015 \mu \mathrm{~F}$	7.5	13.5	18.0	15.0	6000	1900 E4	R76TI 2150-3--
$0.015 \mu \mathrm{~F}$	9.0	12.5	18.0	15.0	6000	1900 E4	R76TI 2150-7--
$0.018 \mu \mathrm{~F}$	8.5	14.5	18.0	15.0	6000	1900 E4	R76TI 2180--3--
$0.018 \mu \mathrm{~F}$	9.0	12.5	18.0	15.0	6000	1900 E4	R76TI 2180-7--
$0.022 \mu \mathrm{~F}$	8.5	14.5	18.0	15.0	6000	1900 E4	R76TI 2220-3--
$0.022 \mu \mathrm{~F}$	13.0	12.0	18.0	15.0	6000	1900 E4	R76TI 2220-7--
$0.027 \mu \mathrm{~F}$	10.0	16.0	18.0	15.0	6000	1900 E4	R76TI 2270-3--
$0.033 \mu \mathrm{~F}$	11.0	19.0	18.0	15.0	6000	1900 E4	R76TI 2330-3--
$0.015 \mu \mathrm{~F}$	6.0	15.0	26.5	22.5	3000	960 E4	R76TN2150-3--
$0.018 \mu \mathrm{~F}$	6.0	15.0	26.5	22.5	3000	960 E4	R76TN2180--3--
$0.022 \mu \mathrm{~F}$	6.0	15.0	26.5	22.5	3000	960 E4	R76TN2220-3--
$0.027 \mu \mathrm{~F}$	6.0	15.0	26.5	22.5	3000	960 E4	R76TN2270-3--
$0.033 \mu \mathrm{~F}$	7.0	16.0	26.5	22.5	3000	960 E4	R76TN2330-3--
$0.039 \mu \mathrm{~F}$	8.5	17.0	26.5	22.5	3000	960 E4	R76TN2390-3--
$0.047 \mu \mathrm{~F}$	10.0	18.5	26.5	22.5	3000	960 E4	R76TN2470-3--
$0.056 \mu \mathrm{~F}$	10.0	18.5	26.5	22.5	3000	960 E4	R76TN2560-3--
$0.068 \mu \mathrm{~F}$	11.0	20.0	26.5	22.5	3000	960 E4	R76TN2680-3--
$0.082 \mu \mathrm{~F}$	11.0	20.0	26.5	22.5	3000	960 E4	R76TN2820-3--
$0.10 \mu \mathrm{~F}$	13.0	22.0	26.5	22.5	3000	960 E4	R76TN3100--3--

Mechanical version and packaging (Table 1)
Internal use
Tolerance: $\mathrm{H}(\pm 2.5 \%) ; \mathrm{J}(\pm 5 \%) ; \mathrm{K}(\pm 10 \%)$

Rated Cap.	$1600 \mathrm{Vdc} / 650 \mathrm{Vac}$				Max dv/dt	Max K0	
	B	H	L	p	$(\mathrm{V} / \mu \mathrm{s})$	$\left(V^{2} / \mu s\right)$	
0.039 ${ }^{\text {F }}$	9.0	17.0	32.0	27.5	2000	640 E4	R76TR 2390-3--
$0.047 \mu \mathrm{~F}$	9.0	17.0	32.0	27.5	2000	640 E4	R76TR 2470--3--
$0.056 \mu \mathrm{~F}$	9.0	17.0	32.0	27.5	2000	640 E4	R76TR 2560--3--
$0.068 \mu \mathrm{~F}$	9.0	17.0	32.0	27.5	2000	640 E4	R76TR 2680--3--
${ }^{*} 0.082 \mu \mathrm{~F}$	11.0	20.0	32.0	27.5	2000	640 E4	R76TR 2820--3--
*0.10 ${ }^{\text {F }}$	11.0	20.0	32.0	27.5	2000	640 E4	R76TR 3100--3--
* $0.12 \mu \mathrm{~F}$	13.0	22.0	32.0	27.5	2000	640 E4	R76TR 3120--3--
*0.15 $\mu \mathrm{F}$	15.0	24.5	32.0	27.5	2000	640 E4	R76TR 3150-3--
*0.18uF	15.0	24.5	32.0	27.5	2000	640 E4	R76TR 3180--3--
*0.22 2 F	18.0	33.0	32.0	27.5	2000	640 E4	R76TR 3220--3--
${ }^{*} 0.27 \mu \mathrm{~F}$	18.0	33.0	32.0	27.5	2000	640 E4	R76TR 3270--3--
${ }^{*} 0.33 \mu \mathrm{~F}$	18.0	33.0	32.0	27.5	2000	640 E4	R76TR 3330-3--
${ }^{*} 0.39 \mu \mathrm{~F}$	22.0	37.0	32.0	27.5	2000	640 E4	R76TR 3390--3--
${ }^{*} 0.47 \mu \mathrm{~F}$	22.0	37.0	32.0	27.5	2000	640 E4	R76TR 3470--3--
$0.56 \mu \mathrm{~F}$	20.0	40.0	41.5	37.5	1200	384 E4	R76TW3560--3--
$0.68 .1{ }^{\text {F }}$	20.0	40.0	41.5	37.5	1200	384 E4	R76TW3680--3--
$0.82 \mu \mathrm{~F}$	24.0	44.0	41.5	37.5	1200	384 E 4	R76TW3820--3--
$1.0 \mu \mathrm{~F}$	24.0	44.0	41.5	37.5	1200	384 E4	R76TW4100--3--

Mechanical version and packaging (Table 1)
Internal use
Tolerance: $\mathrm{H}(\pm 2.5 \%) ; \mathrm{J}(\pm 5 \%) ; \mathrm{K}(\pm 10 \%)$

All dimensions are in mm.

[^2]* These values are available in pitch 37.5 mm upon request.

(2000Vdc)

Rated Cap.	2000Vdc / 700Vac				Max dv/dt	Max K ${ }_{0}$	Part Number
	B	H	L	p	$(\mathrm{V} / \mathrm{us})$	($\mathrm{V}^{2} / \mu \mathrm{s}$)	
220pF	5.0	11.0	18.0	15.0	9500	3800 E4	R76UI 0220--0--
270pF	5.0	11.0	18.0	15.0	9500	3800 E4	R76Ul 0270--0--
330pF	5.0	11.0	18.0	15.0	9500	3800 E4	R76UI 0330-0--
390pF	5.0	11.0	18.0	15.0	9500	3800 E4	R76UI 0390--0--
470pF	5.0	11.0	18.0	15.0	9500	3800 E4	R76UI 0470-0--
560pF	5.0	11.0	18.0	15.0	9500	3800 E4	R76UI 0560-0--
680 pF	5.0	11.0	18.0	15.0	9500	3800 E4	R76UI 0680-0--
820pF	5.0	11.0	18.0	15.0	9500	3800 E4	R76Ul 0820--0--
1000pF	5.0	11.0	18.0	15.0	9500	3800 E4	R76Ul 1100--3--
1200pF	5.0	11.0	18.0	15.0	9500	3800 E4	R76UI 1120--3--
1500pF	5.0	11.0	18.0	15.0	9500	3800 E4	R76UI 1150--3--
1800pF	5.0	11.0	18.0	15.0	9500	3800 E4	R76Ul 1180--3--
2200pF	5.0	11.0	18.0	15.0	9500	3800 E4	R76Ul 1220--3--
2700 pF	5.0	11.0	18.0	15.0	9500	3800 E4	R76Ul 1270--3--
3300pF	6.0	12.0	18.0	15.0	9500	3800 E4	R76UI 1330--3--
3900pF	6.0	12.0	18.0	15.0	9500	3800 E4	R76UI 1390--3--
4700pF	6.0	12.0	18.0	15.0	9500	3800 E4	R76UI 1470--3--
5600pF	7.5	13.5	18.0	15.0	9500	3800 E4	R76UI 1560-3-3
5600pF	9.0	12.5	18.0	15.0	9500	3800 E4	R76UI 1560--7--
6800pF	7.5	13.5	18.0	15.0	9500	3800 E4	R76Ul 1680--3--
6800pF	9.0	12.5	18.0	15.0	9500	3800 E4	R76Ul 1680--7--
8200pF	8.5	14.5	18.0	15.0	9500	3800 E4	R76Ul 1820-3--
8200pF	9.0	12.5	18.0	15.0	9500	3800 E4	R76U 1820--7--
0.010 F	10.0	16.0	18.0	15.0	9500	3800 E4	R76UI 2100--3--
$0.010 \mu \mathrm{~F}$	13.0	12.0	18.0	15.0	9500	3800 E4	R76UI 2100--7--
$0.012 \mu \mathrm{~F}$	10.0	16.0	18.0	15.0	9500	3800 E4	R76Ul 2120--3--
$0.015 \mu \mathrm{~F}$	11.0	19.0	18.0	15.0	9500	3800 E4	R76Ul 2150--3--
1000pF	6.0	15.0	26.5	22.5	3500	1400 E4	R76UN1100-0--
1200pF	6.0	15.0	26.5	22.5	3500	1400 E4	R76UN1120-0--
1500pF	6.0	15.0	26.5	22.5	3500	1400 E4	R76UN1150-0--
1800pF	6.0	15.0	26.5	22.5	3500	1400 E4	R76UN1180-0--
2200pF	6.0	15.0	26.5	22.5	3500	1400 E4	R76UN1220--0--
2700pF	6.0	15.0	26.5	22.5	3500	1400 E4	R76UN1270-0--
3300 pF	6.0	15.0	26.5	22.5	3500	1400 E4	R76UN1330-0--
3900 pF	6.0	15.0	26.5	22.5	3500	1400 E4	R76UN1390--0--
4700pF	6.0	15.0	26.5	22.5	3500	1400 E4	R76UN1470--0--
5600pF	6.0	15.0	26.5	22.5	3500	1400 E4	R76UN1560--0--
6800 pF	6.0	15.0	26.5	22.5	3500	1400 E4	R76UN1680--0--
8200pF	6.0	15.0	26.5	22.5	3500	1400 E4	R76UN1820--3--
0.010 F	6.0	15.0	26.5	22.5	3500	1400 E4	R76UN2100--3--
$0.012 \mu \mathrm{~F}$	6.0	15.0	26.5	22.5	3500	1400 E4	R76UN2120--3--
$0.015 \mu \mathrm{~F}$	7.0	16.0	26.5	22.5	3500	1400 E4	R76UN2150-3.-
0.018 $\mu \mathrm{F}$	7.0	16.0	26.5	22.5	3500	1400 E4	R76UN2180--3--
$0.022 \mu \mathrm{~F}$	8.5	17.0	26.5	22.5	3500	1400 E4	R76UN2220-3--
$0.027 \mu \mathrm{~F}$	10.0	18.5	26.5	22.5	3500	1400 E4	R76UN2270--3--
$0.033 \mu \mathrm{~F}$	10.0	18.5	26.5	22.5	3500	1400 E4	R76UN2330-3--
$0.039 \mu \mathrm{~F}$	11.0	20.0	26.5	22.5	3500	1400 E4	R76UN2390--3--
$0.047 \mu \mathrm{~F}$	13.0	22.0	26.5	22.5	3500	1400 E4	R76UN2470--3--
$0.056 \mu \mathrm{~F}$	13.0	22.0	26.5	22.5	3500	1400 E4	R76UN2560--3--

Rated Cap.	2000Vdc/700Vac				Max dv/dt (V / Ls)	Max Ko ($\mathrm{V}^{2} / \mu \mathrm{s}$)	Part Number
	B	H	L	p			
0.022uF	9.0	17.0	32.0	27.5	2300	920 E4	R76UR 2220--3--
0.027 μ	9.0	17.0	32.0	27.5	2300	920 E4	R76UR 2270-3--
*0.033и	9.0	17.0	32.0	27.5	2300	920 E4	R76UR 2330--3--
*0.03	10.0	20.0	32.0	27.5	2300	920 E4	R76UR 2390--3--
*0.047	11.0	20.0	32.0	27	2300	920 E4	R76UR 2470--3--
*0.056 $\mu \mathrm{F}$	13.0	22.0	32.0	27.5	2300	920 E4	R76UR 2560--3--
*0.068 μ	13.0	22.0	32.0	27.5	2300	920 E4	R76UR 2680--3--
*0.082 $\mu \mathrm{F}$	15.0	24.5	32.0	27.5	2300	920 E4	R76UR 2820--3--
*0.10 $\mu \mathrm{F}$	14.0	28.0	32.0	27.5	2300	920 E4	R76UR 3100--3--
* $0.12 \mu \mathrm{~F}$	18.0	33.0	32.0	27.5	2300	920 E4	R76UR 3120--3--
*0.15	18.0	33.0	32.0	27.5	2300	920 E4	R76UR 3150--3--
* 0.18μ	22.0	37.0	32.0	27.5	2300	920 E4	R76UR 3180--3--
*0.22 2 F	22.0	37.0	32.0	27.5	2300	920 E4	R76UR 3220--3--
$0.27 \mu \mathrm{~F}$	20.0	40.0	41	37	1500	600	76UW3270--3--
$0.33 \mu \mathrm{~F}$	20.0	40.0	41.5	37.5	1500	600 E4	R76UW3330--3--
0.39μ	24.0	44.0	41.5	37.5	1500	600 E4	R76UW3390--3--
$0.47 \mu \mathrm{~F}$	24.0	44.0	41.5	37.5	1500	600 E 4	R76UW3470--3--

Mechanical version and packaging (Table 1)
Internal use
Tolerance: $\mathrm{H}(\pm 2.5 \%) ; \mathrm{J}(\pm 5 \%) ; \mathrm{K}(\pm 10 \%)$

All dimensions are in mm .
Note: If the working voltage (V) is lower than the rated voltage $\left(V_{R}\right)$, the capacitor may work at higher dv/dt. In this case the maximum value allowed is obtained multiplying the above value (see table dv/dt) with the ratio $\mathrm{V}_{\mathrm{R}} N$. The pulse characteristic K_{0} depends on the voltage waveform and in any case it cannot overcome the value given in the above table. The $\mathrm{dv} / \mathrm{dt}$ test is carried out at 2 times the above values.

* These values are available in pitch 37.5 mm upon request.

[^3]R76
MMKP Series
POLYPROPYLENE CAPACITOR WITH DOUBLE SIDED METALLIZED FILM ELECTRODES D.C. AND PULSE APPLICATIONS PRODUCT CODE: R76

ELECTRICAL CHARACTERISTICS

Rated voltage (V_{R}):
250 Vdc - $400 \mathrm{Vdc}-630 \mathrm{Vdc}$ for 1 section $630 \mathrm{Vdc}-1000 \mathrm{Vdc}-1600 \mathrm{Vdc}-2000 \mathrm{Vdc}$ for 2 sections. Rated temperature (T_{R}):
$+85^{\circ} \mathrm{C}$ for V_{R} (d.c.)
$+75^{\circ} \mathrm{C}$ for V_{R} (a.c.)
Temperature derated voltage:
The following decreasing factor has to be applied on the rated voltage:
$+85^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}: 1.25 \%$ per ${ }^{\circ} \mathrm{C}$ for V_{R} (d.c.)
$+75^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}: 1.35 \%$ per ${ }^{\circ} \mathrm{C}$ for V_{R} (a.c.)

Capacitance range:

$\begin{array}{ll}680 \mathrm{pF} \text { to } 10 \mu \mathrm{~F} & 1 \text { section } \\ 220 \mathrm{pF} \text { to } 3.3 \mu \mathrm{~F} & 2 \text { sections }\end{array}$
Capacitance values:
E12 series (IEC 60063 Norm).
Capacitance tolerances (measured at 1 kHz):
$\pm 5 \%$ (J); $\pm 10 \%$ (K) for $\mathrm{C}<1000 \mathrm{pF}$
$\pm 2.5 \%(\mathrm{H}) ; \pm 5 \%(\mathrm{~J}) ; \pm 10 \%(\mathrm{~K}) \quad$ for $\mathrm{C} \geqslant 1000 \mathrm{pF}$
Total self-inductance (L):
(Lead length $\sim 2 \mathrm{~mm}$)
$\left[\begin{array}{cc|c|c|c|cc|}\hline \text { Pitch }(\mathrm{mm}) & 7.5 & 10 & 15 & 22.5 & 27.5 & 37.5 \\ \hline L(n H) \approx & 8 & 9 & 10 & 18 & 18 & 20 \\ \hline\end{array}\right]$

Dissipation factor (DF):
$\operatorname{tg} \delta \times 10^{-4}$ at $+25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

kHz	$\mathrm{C} \leq 0.1 \mu \mathrm{~F}$	$0.1 \mu \mathrm{~F}<\mathrm{C} \leqslant 1.0 \mu \mathrm{~F}$	$\mathrm{C}>1 \mu \mathrm{~F}$
1	≤ 3	≤ 3	≤ 4
10	≤ 4	≤ 6	
100	≤ 15		

Insulation resistance:
Test conditions
Temperature:
Voltage charge time: $\quad 1 \mathrm{~min}$
Voltage charge: $\quad 100 \mathrm{Vdc}$
Performance

$$
\begin{array}{ll}
\geq 1 \times 10^{5} \mathrm{M} \Omega \text { for } \mathrm{C} \leq 0.33 \mu \mathrm{~F} & \left(5 \times 10^{5} \mathrm{M} \Omega\right)^{\star} \\
\geq 30000 \mathrm{~s} \quad \text { for } \mathrm{C}>0.33 \mu \mathrm{~F} & (150000 \mathrm{~s})^{\star} \\
\text { * Typical value. }
\end{array}
$$

Test voltage between terminations:

$1.6 \times \mathrm{V}_{\mathrm{R}}$ applied for 2 s at $+25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

TEST METHOD AND PERFORMANCE

Damp heat, steady state:
Test conditions

Temperature:	$+40^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$
Relative humidity (RH):	$93 \% \pm 2 \%$
Test duration:	56 days
Performance	
Capacitance change $\mid \triangle \mathrm{C} / \mathrm{Cl}:$	$\leq 2 \%$
DF change ($\Delta \mathrm{tg} \delta$):	$\leq 10 \times 10^{-4}$ at 1 kHz
Insulation resistance:	$\geq 50 \%$ of initial limit.

Endurance:
Test conditions
Temperature:
$+85^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$
Test duration:
2000 h
Voltage applied:
$1.25 \times V_{\mathrm{R}}$ (d.c.)
Performance
Capacitance change $\mid \Delta \mathrm{C} / \mathrm{Cl}: \leq 2 \%$
DF change ($\Delta \operatorname{tg} \delta$) : $\leq 10 \times 10^{-4}$ at 10 kHz for $\mathrm{C} \leq 1 \mu \mathrm{~F}$ $\leq 10 \times 10^{-4}$ at 1 kHz for $\mathrm{C}>1 \mu \mathrm{~F}$
Insulation resistance: $\quad \geq 50 \%$ of initial limit.
Resistance to soldering heat:

Test conditions

Solder bath temperature: $\quad+260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
Dipping time (with heat screen): $10 \mathrm{~s} \pm 1 \mathrm{~s}$
Performance
Capacitance change $|\Delta \mathrm{C} / \mathrm{C}|: \leq 1 \%$
DF change $(\Delta \operatorname{tg} \delta): \leq 10 \times 10^{-4}$ at 10 kHz for $\mathrm{C} \leq 1 \mu \mathrm{~F}$ $\leq 10 \times 10^{-4}$ at 1 kHz for $\mathrm{C}>1 \mu \mathrm{~F}$
Insulation resistance: \geq initial limit.
Long term stability (after two years):
Storage: standard environmental conditions (see page 11).
Performance
Capacitance change $\mid \Delta \mathrm{C} / \mathrm{Cl}: \leq 0.5 \%$

POLYPROPYLENE CAPACITOR WITH DOUBLE SIDED METALLIZED FILM ELECTRODES D.C. AND PULSE APPLICATIONS

MAX. VOLTAGE (Vr.m.s.) VERSUS FREQUENCY (sinusoidal wave-form / $\mathrm{T}_{\mathrm{h}} \leq 40^{\circ} \mathrm{C}$)

Note: p (pitch) in mm.

[^0]: Note: If the working voltage (V) is lower than the rated voltage $\left(V_{R}\right)$, the capacitor may work at higher $\mathrm{dv} / \mathrm{dt}$. In this case the maximum value allowed is obtained multiplying the above value (see table $d v / d t$) with the ratio $V_{R} N$. The pulse characteristic K_{0} depends on the voltage wave-form and in any case it cannot overcome the value given in the above table.
 The $\mathrm{dv} / \mathrm{dt}$ test is carried out at 2 times the above values.

 * These values are available in pitch 37.5 mm upon request.

[^1]: Mechanical version and packaging (Table 1)
 Internal use
 Tolerance: $\mathrm{H}(\pm 2.5 \%) ; \mathrm{J}(\pm 5 \%) ; \mathrm{K}(\pm 10 \%)$

[^2]: Note: If the working voltage (V) is lower than the rated voltage $\left(V_{R}\right)$, the capacitor may work at higher $\mathrm{dv} / \mathrm{dt}$. In this case the maximum value allowed is obtained multiplying the above value (see table $\mathrm{dv} / \mathrm{dt}$) with the ratio $\mathrm{V}_{\mathrm{R}} N$. The pulse characteristic K_{0} depends on the voltage wave-form and in any case it cannot overcome the value given in the above table.
 The dv/dt test is carried out at 2 times the above values.

[^3]: Mechanical version and packaging (Table 1)
 Internal use
 Tolerance: $\mathrm{H}(\pm 2.5 \%) ; \mathrm{J}(\pm 5 \%) ; \mathrm{K}(\pm 10 \%)$

