Am27C400

DISTINCTIVE CHARACTERISTICS

- Fast access time

$-100 \mathrm{~ns}$

- Low power consumption
- $100 \mu \mathrm{~A}$ maximum CMOS standby current

E Industry standard pinout:

- ROM compatible
- 44-pin LCC, and PLCC packages provide easy upgrade to 8 Mbits, DIP upgrades require a 40to 42-pin conversion

Single +5 V power supply
 ■ $\pm \mathbf{1 0 \%}$ power supply tolerance standard on most speeds
 - 100\% Flashrite ${ }^{\text {TM }}$ programming
 - Typical programming time of 32 seconds
 Latch-up protected to 100 mA from -1 V to
 $\mathrm{Vcc}+1 \mathrm{~V}$
 High noise immunity

GENERAL DESCRIPTION

The Am27C400 is a 4 Mbit ultraviolet erasable programmable read-only memory that is functionally and pinout compatible with 4 Mbit masked ROMs. Under control of the BYTE input, the memory can be configured as either a 512 K by 8 -bit memory or a 256 K by 16 -bit memory. It operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic packages as well as plastic one time programmable (OTP) packages for both through hole and surface mount applications.

Typically, any byte can be accessed in less than 100 ns , allowing operation with high-performance microprocessors without any WAIT states. The Am27C400 offers
separate Output Enable ($\overline{\mathrm{OE}}$) and Chip Enable ($\overline{\mathrm{CE}}$) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 150 mW in active mode, and $100 \mu \mathrm{~W}$ in standby mode.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The Am27C400 supports AMD's Flashrite ${ }^{\text {TM }}$ programming algorithm ($100 \mu \mathrm{~s}$ pulses) resulting in typical programming times of 32 seconds.

15573B-1

PRODUCT SELECTOR GUIDE

Family Part No.	Am27C400				
Ordering Part No:					
Vcc $\pm 5 \%$	-105	-125			-255
$V_{C C} \pm 10 \%$	-100	-120	-150	-200	-250
Max Access Time (ns)	100	120	150	200	250
$\overline{\mathrm{CE}}$ ($\overline{\mathrm{E}}$) Access Time (ns)	100	120	150	200	250
$\overline{\mathrm{OE}}(\overline{\mathrm{G}})$ Access Time (ns)	50	50	65	75	100

CONNECTION DIAGRAM

Top View

Notes:

1. Inner ring of numbers correspond to the package pins
2. JEDEC nomenclature is in parenthesis

PIN DESIGNATIONS

AB	$=$ Address Input ($\overline{\mathrm{BYTE}}$ Mode)
$\mathrm{AO}-\mathrm{A} 17$	$=$ Address Inputs
$\overline{\mathrm{BYTE}}$	$=$ Byte/Word Switch
$\overline{\mathrm{CE}}(\overline{\mathrm{E}}) / \overline{\mathrm{PGM}}(\overline{\mathrm{P}})$	$=$ Chip Enable and Program Enable Inputs
$\mathrm{DQ} 0-\mathrm{DQ} 15$	$=$ Data Inputs/Outputs
NC	$=$ No Internal Connection
$\overline{\mathrm{OE}}(\overline{\mathrm{G}})$	$=$ Output Enable Input
$V_{c c}$	$=$ Vcc Supply Voltage
$V_{P P}$	$=$ Program Supply Voltage
$V_{S S}$	$=$ Ground

LOGIC SYMBOL

ORDERING INFORMATION

EPROM Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27C400-100	DC, DCB, DI, DIB,
AM27C400-105	LC, LCB, LI, LIB
AM27C400-120	
AM27C400-125	
AM27C400-150 DCB, DI, DIB,	LC, LCB, LI, LIB
AM27C400-200, DEB, LE, LEB	
AM27C400-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

AMD

ORDERING INFORMATION

OTP Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
AM27C400-120	
AM27C400-125	PC, JC, PI, JI
AM27C400-150	
AM27C400-200	
AM27C400-255	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups
$1,2,3,7,8,9,10,11$.

ORDERING INFORMATION

Military APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of:
AM27C400

Valid Combinations	
AM27C400-120	
AM27C400-150	/BUA, /BXA
AM27C400-200	
AM27C400-250	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups
$1,2,3,7,8,9,10,11$.

FUNCTIONAL DESCRIPTION

Erasing the Am27C400

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C400 to an ultraviolet light source. A dosage of 15 W seconds $/ \mathrm{cm}^{2}$ is required to completely erase an Am27C400. This dosage can be obtained by exposure to an ultraviolet lamp - wavelength of $2,537 \AA$-with intensity of $12,000 \mu \mathrm{~W} /$ cm^{2} for 15 to 20 minutes. The Am27C400 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27C400 and similar devices will erase with light sources having wavelengths shorter than $4000 \AA$. Although erasure times will be much longer than with UV sources at $2,537 \AA$, exposure to fluorescent light and sunlight will eventually erase the Am27C400 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C400

Upon delivery or after each erasure the Am27C400 has all $4,194,304$ bits in the "ONE" or HIGH state. "ZEROs" are loaded into the Am27C400 through the procedure of programming.

The programming mode is entered when $12.75 \pm 0.25 \mathrm{~V}$ is applied to the V_{PP} pin, $\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$ is at V_{IL}, and $\overline{\mathrm{OE}}$ is at $V_{I H}$.

For programming, the data to be programmed is applied 16 bits in parallel to the data output pins.

The Flashrite algorithm reduces programming time by using 100μ s programming pulses and by giving each addresss only as many pulses as is necessary in order to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum is reached. This process is repeated while sequencing through each address of the Am27C400. This part of the algorithm is done at $\mathrm{V}_{\mathrm{Cc}}=$ 6.25 V to assure that each EPROM bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at $V_{C C}=V_{P P}=5.25 \mathrm{~V}$.

Please refer to Section 6.0 for programming and flow chart characteristics.

Program Inhibit

Programming of multiple Am27C400s in parallel with different data is also easily accomplished. Except for CE/PGM, all like inputs of the parallel Am27C400 may be common. A TTL low-level program pulse applied to
an Am27C400 $\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$ input with $\mathrm{V}_{\mathrm{PP}}=12.75 \mathrm{~V} \pm 0.25$ V , and $\overline{\mathrm{OE}}$ HIGH will program that Am27C400. A highlevel $\overline{\mathrm{CE}} / \mathrm{PGM}$ input inhibits the other Am27C400 devices from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with $\overline{O E}$ at $V_{I L}, \overline{C E} / \overline{P G M}$ at V_{IH} and V_{PP} between 12.5 V and 13.0 V .

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the Am27C400.

To activate this mode, the programming equipment must force $12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ on address line A 9 of the Am27C400. Two identifier bytes may then be sequenced from the device outputs by toggling address line $A 0$ from $V_{I L}$ to $V_{I H}$. All other address lines must be held at V_{IL} during auto select mode.

Byte $0\left(A 0=V_{L L}\right)$ represents the manufacturer code, and Byte $1\left(A O=V_{H}\right)$, the device identifier code. For the Am27C400, these two identifier bytes are given in the Mode Select table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C400 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$) is the power control and should be used for device selection. Output Enable $(\overline{O E})$ is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{Ac}) is equal to the delay from $\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$ to output (tcE). Data is available at the outputs toe after the falling edge of $\overline{O E}$, assuming that $\overline{C E} / \overline{P G M}$ has been LOW and addresses have been stable for at least $t_{A c c}-t_{o E}$.

Byte Mode

The user has the option of reading data in either 16-bit words or 8 -bit bytes under control of the BYTE input. With the BYTE input HIGH, inputs A0-A17 will address 256K words of 16 -bit data. When the BYTE input is LOW, AB functions as the least significant address input and 512 K bytes of data can be accessed. The 8 bits of data will appear on DQ0-DQ7.

Standby Mode

The Am27C400 has a CMOS standby mode which reduces the maximum $V_{c c}$ current to $100 \mu \mathrm{~A}$. It is placed in CMOS-standby when $\overline{C E} / \overline{\mathrm{PGM}}$ is at $\mathrm{V}_{\mathrm{CC}} \pm 0.3 \mathrm{~V}$. The Am27C400 also has a TTL-standby mode which reduces the maximum V_{cc} current to 1.0 mA . It is placed in TTL-standby when $\overline{C E} /$ PGM is at $\mathrm{V}_{1 \mathrm{H}}$. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{O E}$ input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- Low memory power dissipation
- Assurance that output bus contention will not occur It is recommended that $\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$ be decoded and used as the primary device-selecting function, while $\overline{O E}$ be made a common connection to all devices in the array and connected to the READ line from the system control
bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a $0.1 \mu \mathrm{~F}$ ceramic capacitor (high frequency, low inherent inductance) should be used on each device between $V_{c c}$ and $V_{s s}$ to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a $4.7 \mu \mathrm{~F}$ bulk electrolytic capacitor should be used between Vcc and $V_{s s}$ for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

Mode Pins		CE/PGM	$\overline{O E}$	A0	A9	Vpp	Outputs
Read		$\mathrm{V}_{\text {IL }}$	VIL	X	X	X	Dout
Output Disable		VIL	V_{IH}	X	X	X	$\mathrm{Hi}-\mathrm{Z}$
Standby (TTL)		V_{IH}	X	X	X	X	$\mathrm{Hi}-\mathrm{Z}$
Standby (CMOS)		$\mathrm{Vcc} \pm 0.3 \mathrm{~V}$	X	X	X	X	Hi-Z
Program		VIL	$\mathrm{VIH}^{\text {I }}$	X	X	VPP	Din
Program Verify		VIH	VIL	X	X	VPP	Dout
Program Inhibit		V_{IH}	VIH	X	X	VPP	$\mathrm{Hi}-\mathrm{Z}$
Auto Select (Note 3)	Manufacturer Code	VIL	VIL	VIL	V_{H}	X	01H
	Device Code	VIL	VIL	VIH	V_{H}	X	9DH

Notes:

1. $V_{H}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
2. $X=$ Either $V_{I H}$ or $V_{I L}$
3. $A 1-A 8=A 0-A 17=V_{L}$

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
OTP Products $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
All Other Products $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Ambient Temperature
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect To $V_{S S}$
All pins except A9, $\mathrm{V}_{\text {pp }}, \mathrm{V}_{c c} .-0.6 \mathrm{~V}$ to $\mathrm{Vcc}+0.6 \mathrm{~V}$
A9 and $V_{\text {Pp }} \ldots . .$.
VCC . -0.6 V to +7.0 V

Notes:

1. Minimum $D C$ voltage on input or $/ / O$ pins is -0.5 V . During transitions, the inputs may overshoot V ss to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O pins is $V_{c c}+0.5 \mathrm{~V}$ which may overshoot to $V_{c c}+2.0 \mathrm{~V}$ for periods up to 20 ns.
2. For $A 9$ and $V_{P P}$ the minimum $D C$ input is -0.5 V . During transitions, A9 and $V_{\text {PP }}$ may overshoot $V_{\text {SS }}$ to -2.0 V for periods of up to 20 ns . A9 and $V_{\text {PP }}$ must not exceed 13.5 V for any period of time.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (T_{C}) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Industrial (I) Devices

Case Temperature (T_{C}) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended Commercial (E) Devices
Case Temperature (T_{c}) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military (M) Devices
Case Temperature (T_{C}) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Supply Read Voltages

Vcc for Am27C400-XX5 +4.75 V to +5.25 V
V_{Cc} for Am27C400-XX0 +4.50 V to +5.50 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified.
(Notes 1, 2, 3 and 4) (for APL Products, Group A, Subgroups 1, 2, 3, 6 and 7 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Unit
VOH	Output HIGH Voltage	$\mathrm{IOH}=-400 \mu \mathrm{~A}$		2.4		V
VOL	Output LOW Voltage	$\mathrm{lOL}=2.1 \mathrm{~mA}$			0.45	V
VIH	Input HIGH Voltage			2.0	$\mathrm{Vcc}+0.5$	V
VIL	Input LOW Voltage			-0.5	+0.8	V
lut	Input Load Current	$\mathrm{VIN}=0 \mathrm{~V}$ to +Vcc			1.0	$\mu \mathrm{A}$
ILO	Output Leakage Current	Vout $=0 \mathrm{~V}$ to +Vcc			5.0	$\mu \mathrm{A}$
ICC1	Vcc Active Current (Note 3)	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{VIL}^{\prime} \mathrm{f}=5 \mathrm{MHz}, \\ & \mathrm{lOUT}=0 \mathrm{~mA} \end{aligned}$	C/l Devices		40	mA
			E/M Devices		60	
ICC2	Vcc TTL Standby Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			1.0	mA
Icc3	Vcc CMOS Standby Current	$\overline{\mathrm{CE}}=\mathrm{Vcc} \pm 0.3 \mathrm{~V}$			100	$\mu \mathrm{A}$
IPP1	VPP Current During Read	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{VPP}=\mathrm{V}_{C C}$			100	$\mu \mathrm{A}$

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. Caution: The Am27C400 must not be removed from (or inserted into) a socket when $V_{C C}$ or $V_{P P}$ is applied.
3. ICCI is tested with $\overline{O E} V_{P P}=V_{I H}$ to simulate open outputs.
4. Minimum DC input Voltage is -0.5 V . During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns . Maximum DC Voltage on output pins is VCC +0.5 V , which may overshoot to $V C C+2.0 \mathrm{~V}$ for periods less than 20 ns.

Figure 1. Typical Supply Current vs. Frequency
$\mathrm{V} c \mathrm{c}=5.5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$

Figure 2. Typical Supply Current vs. Temperature
$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{f}=5 \mathrm{MHz}$
15573B-6

CAPACITANCE

Parameter Symbol	Parameter Description	Test Conditions	CDV040		CLV044		PD 040		PL 044		Unit
			Typ	Max	Typ	Max	Typ	Max	Typ	Max	
CIN	Input Capacitance	V IN $=0$	9	12	9	11	6	8	9	11	pF
Cout	Output Capacitance	Vout $=0$	12	15	13	15	9	11	13	15	pF

Notes:

1. This parameter is only sampled and not 100% tested.
2. $T_{A}=+25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$.

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (Notes 1, 3 and 4) (for APL Products, Group A, Subgroups 9, 10 and 11 are tested unless otherwise noted)

Parameter Symbols		Parameter Description	Test Conditions		Am27C400					Unit
JEDEC	Standard				$\begin{array}{r} -105 \\ -100 \end{array}$	$\begin{array}{r} -125 \\ -120 \\ \hline \end{array}$	$\begin{array}{r} -155 \\ -150 \\ \hline \end{array}$	-200	-255	
tavav	tacc	Address to Output Delay	$\begin{aligned} & \overline{\mathrm{CE}}=\overline{\mathrm{OE}}= \\ & \mathrm{V}_{\mathrm{IL}} \end{aligned}$	Min	-	-	-	-	-	
				Max	100	120	150	200	250	ns
telov	tce	Chip Enable to Output Delay	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$	Min	-	-	-	-	-	
				Max	100	120	150	200	250	ns
tglov	toe	Output Enable to Output Delay	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$	Min	-	-	-	-	-	
				Max	50	50	55	60	75	ns
tehoz, tGHQZ	tDF (Note 2)	Chip Enable HIGH or Output Enable HIGH, whichever comes first, to Output Float		Min	-	-	-	-	-	
				Max	30	30	30	40	60	ns
taxax	toh	Output Hold from Addresses, $\overline{\mathrm{CE}}$, or $\overline{\mathrm{OE}}$, whichever occurred first		Min	0	0	0	0	0	
				Max	-	-	-	-	-	ns

Notes:

1. VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
2. This parameter is only sampled and not 100% tested.
3. Caution: The Am27C400 must not be removed from (or inserted into) a socket or board when VPP or VCC is applied.
4. Output Load: 1 TTL gate and $C_{L}=100 \mathrm{pF}$ Input Rise and Fall Times: 20 ns Input Pulse Levels: 0.45 V to 2.4 V Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs.

SWITCHING TEST WAVEFORM

15573B-8

AC Testing: Inputs are driven at 2.4 V for a logic " 1 " and 0.45 for a logic " 0 ". Input pulse rise and fall times are $\leq 20 \mathrm{~ns}$.

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS	OUTPUTS
	Must Be Steady	Will Be Steady
	May Change from H to L	Will Be Changing from H to L
	May Change from L to H	Will Be Changing from L to H
	Don't Care, Any Change Permitted	Changing, State Unknown
	Does Not Apply	Center Line is High Impedance "Off" State

SWITCHING WAVEFORMS

Notes:

1. $\overline{O E}$ may be delayed up to $t_{A C C}$ - toE after the falling edge of the addresses without impact on tACC.
2. tDF is specified from $\overline{O E}$ or $\overline{C E}$, whichever occurs first.
