Low Power, Precision Analog Microcontroller
,
Dual
Sigma-Delta ADCs,
Flash/EE, ARM7TDMI
Data Sheet ADuC7060/ADuC7061
Rev. E Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2009–2014 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
FEATURES
Analog input/output
Dual (24-bit) ADCs
Single-ended and differential inputs
Programmable ADC output rate (4 Hz to 8 kHz)
Programmable digital filters
Built-in system calibration
Low power operation mode
Primary (24-bit) ADC channel
2 differential pairs or 4 single-ended channels
PGA (1 to 512) input stage
Selectable input range: ±2.34 mV to ±1.2 V
30 nV rms noise
Auxiliary (24-bit) ADC: 4 differential pairs or 7 single-
ended channels
On-chip precision reference (±10 ppm/°C)
Programmable sensor excitation current sources
200 μA to 2 mA current source range
Single 14-bit voltage output DAC
Microcontroller
ARM7TDMI core, 16-/32-bit RISC architecture
JTAG port supports code download and debug
Multiple clocking options
Memory
32 kB (16 kB × 16) Flash/EE memory, including 2 kB kernel
4 kB (1 kB × 32) SRAM
Tools
In-circuit download, JTAG based debug
Low cost, QuickStart™ development system
Communications interfaces
SPI interface (5 Mbps)
4-byte receive and transmit FIFOs
UART serial I/O and I2C (master/slave)
On-chip peripherals
4× general-purpose (capture) timers including
Wake-up timer
Watchdog timer
Vectored interrupt controller for FIQ and IRQ
8 priority levels for each interrupt type
Interrupt on edge or level external pin inputs
16-bit, 6-channel PWM
General-purpose inputs/outputs
Up to 14 GPIO pins that are fully 3.3 V compliant
Power
AVDD/DVDD specified for 2.5 V (±5%)
Active mode: 2.74 mA (@ 640 kHz, ADC0 active)
10 mA (@ 10.24 MHz, both ADCs active)
Packages and temperature range
Fully specified for −40°C to +125°C operation
32-lead LFCSP (5 mm × 5 mm)
48-lead LFCSP and LQFP
Derivatives
32-lead LFCSP (ADuC7061)
48-lead LQFP and 48-lead LFCSP (ADuC7060)
APPLICATIONS
Industrial automation and process control
Intelligent, precision sensing systems, 4 mA to 20 mA
loop-based smart sensors
GENERAL DESCRIPTION
The ADuC7060/ADuC7061 series are fully integrated, 8 kSPS,
24-bit data acquisition systems incorporating high performance
multichannel sigma-delta (Σ-Δ) analog-to-digital converters
(ADCs), 16-bit/ 32-bit ARM7TDMI® MCU, and Flash/EE memory
on a single chip.
The ADCs consist of a primary ADC with two differential pairs or
four single-ended channels and an auxiliary ADC with up to seven
channels. The ADCs operate in single-ended or differential input
mode. A single-channel buffered voltage output DAC is available
on chip. The DAC output range is programmable to one of four
voltage ranges.
The devices operate from an on-chip oscillator and a PLL gene-
rating an internal high frequency clock up to 10.24 MHz. The
microcontroller core is an ARM7TDMI, 16-bit/32-bit RISC
machine offering up to 10 MIPS peak performance; 4 kB of SRAM
and 32 kB of nonvolatile Flash/EE memory are provided on chip.
The ARM7TDMI core views all memory and registers as a single
linear array.
The ADuC7060/ADuC7061 contains four timers. Timer1 is a
wake-up timer with the ability to bring the part out of power saving
mode. Timer2 is configurable as a watchdog timer. A 16-bit PWM
with six output channels is also provided. The ADuC7060/
ADuC7061 contains an advanced interrupt controller. The
vectored interrupt controller (VIC) allows every interrupt to be
assigned a priority level. It also supports nested interrupts to a
maximum level of eight per IRQ and FIQ. When IRQ and FIQ
interrupt sources are combined, a total of 16 nested interrupt levels
is supported. On-chip factory firmware supports in-circuit serial
download via the UART serial interface ports and nonintrusive
emulation via the JTAG interface. The parts operate from 2.375 V
to 2.625 V over an industrial temperature range of −40°C to
+125°C.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 2 of 108
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Revision History ............................................................................... 3
Functional Block Diagram .............................................................. 5
Specifications ..................................................................................... 6
Electrical Specifications ............................................................... 6
Timing Specifications ................................................................ 11
Absolute Maximum Ratings .......................................................... 15
ESD Caution ................................................................................ 15
Pin Configurations and Function Descriptions ......................... 16
Terminology .................................................................................... 21
Overview of the ARM7TDMI Core ............................................. 22
Thumb Mode (T) ........................................................................ 22
Multiplier (M) ............................................................................. 22
EmbeddedICE (I) ....................................................................... 22
ARM Registers ............................................................................ 22
Interrupt Latency ........................................................................ 23
Memory Organization ............................................................... 23
Flash/EE Control Interface ........................................................ 24
Memory Mapped Registers ....................................................... 28
Complete MMR Listing ............................................................. 29
Reset ............................................................................................. 34
Oscillator, PLL, and Power Control ............................................. 35
Clocking System ......................................................................... 35
Power Control System................................................................ 35
ADC Circuit Information .............................................................. 39
Reference Sources ....................................................................... 40
Diagnostic Current Sources ...................................................... 40
Sinc3 Filter ................................................................................... 41
ADC Chopping ........................................................................... 41
Programmable Gain Amplifier ................................................. 41
Excitation Sources ...................................................................... 41
ADC Low Power Mode .............................................................. 41
ADC Comparator and Accumulator ....................................... 42
Temperature Sensor ................................................................... 42
ADC MMR Interface ................................................................. 42
Example Application Circuits ................................................... 55
DAC Peripherals ............................................................................. 57
DAC .............................................................................................. 57
MMR Interface ........................................................................... 57
Using the DAC ............................................................................ 58
Nonvolatile Flash/EE Memory ..................................................... 59
Flash/EE Memory Reliability .................................................... 59
Programming .............................................................................. 59
Processor Reference Peripherals ................................................... 60
Interrupt System ......................................................................... 60
IRQ ............................................................................................... 60
Fast Interrupt Request (FIQ) .................................................... 61
Programmed Interrupts............................................................. 62
Vectored Interrupt Controller (VIC) ....................................... 62
VIC MMRs .................................................................................. 62
Timers .............................................................................................. 67
HR:MIN:SEC: 1/128 Format..................................................... 67
Timer0.......................................................................................... 68
Timer1 or Wake-Up Timer ....................................................... 70
Timer2 or Watchdog Timer ...................................................... 72
Timer3.......................................................................................... 74
Pulse-Width Modulator ................................................................. 76
Pulse-Width Modulator General Overview ........................... 76
UART Serial Interface .................................................................... 81
Baud Rate Generation ................................................................ 81
UART Register Definitions ....................................................... 81
I2C ..................................................................................................... 87
Configuring External Pins for I2C Functionality ................... 87
Serial Clock Generation ............................................................ 88
I2C Bus Addresses ....................................................................... 88
I2C Registers ................................................................................ 88
Serial Peripheral Interface ............................................................. 97
MISO (Master In, Slave Out) Pin ............................................. 97
MOSI (Master Out, Slave In) Pin ............................................. 97
SCLK (Serial Clock I/O) Pin ..................................................... 97
Slave Select (P0.0/SSE) Input Pin ............................................... 97
Configuring External Pins for SPI Functionality ................... 97
SPI Registers ................................................................................ 98
General-Purpose I/O ................................................................... 102
GPxCON Registers................................................................... 102
GPxDAT Registers ................................................................... 103
GPxSET Registers ..................................................................... 103
GPxCLR Registers .................................................................... 103
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 3 of 108
GPxPAR Registers .................................................................... 103
Hardware Design Considerations .............................................. 105
Power Supplies .......................................................................... 105
Outline Dimensions ...................................................................... 106
Ordering Guide ......................................................................... 107
REVISION HISTORY
10/14Rev. D to Rev. E
Changes to Table 1 ............................................................................ 6
Changed FEESIGN to FEESIG (Throughout) ............................. 25
Changed FEEHIDE to FEEHID (Throughout) .......................... 26
Changes to Table 36 ........................................................................ 40
Changes to Sinc3 Filter Section ..................................................... 41
Changes to Table 43 ........................................................................ 46
Changes to ADC Filter Register Section ...................................... 48
Changes to Table 94 ........................................................................ 85
Changes to I2C Section ................................................................... 87
Changes to Table 97 ........................................................................ 89
Changed Register I2CMSTA, Bit 7 from I2CMNA to I2CMND;
Table 98 ............................................................................................. 90
Changes to Table 104. ..................................................................... 93
Changes to Table 105 ...................................................................... 94
Updated Figure 31, Outline Dimensions ...................................106
4/12Rev. C to Rev. D
Changes to Table 1 ............................................................................ 6
Changes to Table 7 .......................................................................... 14
Changes to Table 16 ........................................................................ 25
Change to Command Sequence for Executing a Mass Erase
Section ............................................................................................... 26
Changes to Table 19 ........................................................................ 29
Changes to Power and Clock Control Registers Section ........... 35
Changes to Figure 20 ...................................................................... 55
Changes to Bit 5 in Table 63 ........................................................... 57
Changes to Timers Section; Added Hr:Min:Sec: 1/128 Format
Section and Table 79, Renumbered Sequenitially ....................... 67
Changes to Timer1 or Wake-Up Timer Section ......................... 70
Changes to Timer2 Load Register Section and Timer2 Value
Register Section ............................................................................... 71
Added Table 108 .............................................................................. 98
Updated Outline Dimensions ......................................................105
5/11—Rev. B to Rev. C
Change to Figure 1 ............................................................................ 4
Changes to Table 1 ............................................................................ 6
Add Temporary Protection Section and Keyed Permanent
Protection Section ........................................................................... 25
Added Permanent Protection Section and Sequence to Write
the Software Protection Key and Set Permanent Protection
Section .............................................................................................. 26
Changes to Power Control System Section .................................. 35
Changes to Bit 9:6, Table 43 ........................................................... 45
Changes to Primary Channel ADC Data Register Section and
Table 49 ............................................................................................. 50
Changes to IRQEN Section and IRQCLR Section ..................... 59
Changes to Timer1 or Wake-Up Timer Section ......................... 69
Changes to Table 108 .................................................................... 101
2/10Rev. A to Rev. B
Changes to Features Section ............................................................ 1
Changes to Table 1 ............................................................................ 4
Changes to Digital I/O Voltage to DGND Parameter ................ 14
Changes to Pin 19, Pin 20, and Pin 45 Descriptions (Table 8).. 16
Changes to Pin 13, Pin 14, and Pin 29 Descriptions (Table 9).. 18
Changes to Bit 8 in Table 14 .......................................................... 23
Changes to Table 20 ........................................................................ 28
Changes to Power Control System Section.................................. 34
Added Table 32 ................................................................................ 35
Changes to Endnote 2 and Endnote 3 of Table 34 ...................... 36
Changes to Table 42 ........................................................................ 42
Changes to Bit 12 and Bits[3:0] in Table 43 ................................. 44
Changes to Bit 12 in Table 44 ........................................................ 45
Changes to Endnote 2 in Table 45 ................................................ 47
Changes to Bit 5 in Table 63 .......................................................... 55
Changes to Serial Downloading (In-Circuit Programming)
Section .............................................................................................. 57
Changes to Priority Registers Section .......................................... 61
Changes to GPxPAR Registers Section ...................................... 101
6/09Rev. 0 to Rev. A
Added ADuC7061 .............................................................. Universal
Added New Package CP-32-4 ........................................... Universal
Changes to Features Section ............................................................ 1
Changes to General Description Section ....................................... 1
Changes to Figure 1 .......................................................................... 4
Changes to Table 1 ............................................................................ 7
Deleted Endnote to Table 2 ............................................................ 10
Changes to Endnotes, Table 3 and Table 4 ................................... 11
Changes to Endnotes, Table 5 ........................................................ 12
Changes to Endnotes, Table 6 ........................................................ 13
Changes to Figure 7 and Table 8 ................................................... 15
Added Figure 8 and Table 9, Renumbered Sequentially ............ 18
Changes to Flash EE/Control Interface Section .......................... 23
Change to Code 0x04 Description, Table 15 ............................... 24
Change to Bit 31 Description, Table 16 ........................................ 25
Changes to Table 17 ........................................................................ 27
Changes to Table 19 T0CLRI and Table 20 .................................. 28
Changes to Endnote, Table 21 ....................................................... 29
Change to SPITX Default Value, Table 25 ................................... 30
Changes to External Clock Selection Section ............................. 33
Changes to ADC Circuit Information Section............................ 36
Change to Column Heading Table 35 .......................................... 37
Change to Bit 6 Description, Table 39 .......................................... 40
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 4 of 108
Change to Bit 12 Description, Table 43 ....................................... 44
Changes to Primary Channel ADC Data Register Section
and Auxiliary Channel ADC Data Register Section .................. 48
Change to Table 59 and Figure 17 ................................................ 51
Changes to Using the DAC Section ............................................. 55
Changes to Nonvolatile Flash/EE Memory Section and
Programming Section .................................................................... 56
Changes to Vectored Interrupt Controller (VIC) Section ........ 59
Changes to Priority Registers Section .......................................... 60
Change to Table 73 ......................................................................... 61
Changes to Figure 23 ...................................................................... 65
Changes Table 78 ............................................................................ 66
Changes to Figure 24 and Table 79 ............................................... 68
Changes to Timer2 Interface Section and Figure 25.................. 69
Changes to Timer3 Capture Register Section ............................. 71
Change to Bits[16:12] Description, Table 81 .............................. 72
Changes Pulse-Width Modulator General Overview Section,
Table 82, and Figure 26 .................................................................. 73
Changes to Table 84 Column Headings ...................................... 75
Changes to Table 92 ....................................................................... 82
Changes to Bit 1, Table 102 ........................................................... 90
Changes to Bit 11 Description, Table 105 ................................... 95
Changes to SPIMDE Bit Description, Table 106 ........................ 97
Updated Outline Dimensions ..................................................... 103
Changes to Ordering Guide ........................................................ 104
4/09—Revision 0: Initial Version
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 5 of 108
FUNCTIONAL BLOCK DIAGRAM
PRECISION ANALOG PERIPHERALS
POR
MEMORY
32kB FLASH
4kB RAM
ARM7TDMI
MCU
10MHz
ON-CHIP
OSC (3%)
PLL
4× TIMERS
WDT
W/U TIMER
PWM
GPIO PORT
UART PORT
SPI PORT
I
2
C PORT
VIC
(VECTORED
INTERRUPT
CONTROLLER)
MUX
MUX
24-BIT
Σ-
ADC
BUF
24-BIT
Σ-ADC
PGA
PRECISION
REFERENCE
TEMP
SENSOR
14-BIT
DAC
RESET
XTALO
XTALI
ADC0
ADC1
ADC5
ADC4
ADC3
ADC2
ADC6
ADC7
ADC8
ADC9
IEXC0
IEXC1
DAC0
VREF+
VREF–
GND_SW ADuC7060/
ADuC7061
BUF
07079-001
Figure 1.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 6 of 108
SPECIFICATIONS
ELECTRICAL SPECIFICATIONS
VDD = 2.5 V ± 5%, VREF+ = 1.2 V, VREF= GND, fCORE = 10.24 MHz driven from an external 32.768 kHz watch crystal or on-chip oscillator, all
specifications TA = −40°C to +125°C, unless otherwise noted. Output noise specifications can be found in Table 36 (primary ADC) and
Table 38 (ADC auxiliary channel).
Table 1. ADuC7060/ADuC7061 Specifications
Parameter
Test Conditions/Comments
Min
Typ
Max
Unit
ADC SPECIFICATIONS For all ADC specifications, assume
normal operating mode unless
specifically stated otherwise
Conversion Rate1 Chop off, ADC normal operating
mode
50 8000 Hz
Chop on, ADC normal operating
mode
4 2600 Hz
Chop on, ADC low power mode 1 650 Hz
Main Channel
No Missing Codes1 Chop off (fADC ≤ 1 kHz) 24 Bits
Chop on (fADC ≤ 666 Hz) 24 Bits
Integral Nonlinearity1, 2
Gain = 4
±15
ppm of FSR
Offset Error3, 4 Chop off, offset error is in the
order of the noise for the pro-
grammed gain and update rate
following calibration
27 ±8 +27 μV
Offset Error1, 3, 4
Chop on
2.7
±0.5
+2.7
μV
Offset Error Drift vs.
Temperature5
Chop off (with gain ≤ 64) 650/PGA_GAIN nV/°C
Chop on (with gain ≤ 64) 10 nV/°C
Full-Scale Error1, 6, 7, 8 Normal mode −1 ±0.5 +1 mV
Full-Scale Error 6, 8 Low power mode −2 ±1.0 +2 mV
Gain Drift vs. Temperature9 5 ppm/°C
PGA Gain Mismatch Error ±0.1 %
Power Supply Rejection1 Chop on, ADC = 1 V (gain = 1) 65 dB
Chop on, ADC = 7.8 mV (gain = 128) 84.7 113 dB
Chop off, ADC = 1 V (gain = 1) 56 65 dB
Auxiliary Channel
No Missing Codes1 Chop off (fADC ≤ 1 kHz) 24 Bits
Chop on (f
ADC
≤ 666 Hz)
24
Bits
Integral Nonlinearity1 ±15 ppm of FSR
Offset Error4 Chop off 120 ±30 +100 μV
Offset Error1, 4 Chop on 1.5 ±0.5 +3.2 μV
Offset Error Drift vs.
Temperature5
Chop off 200 nV/°C
Chop on 10 nV/°C
Full-Scale Error1, 6, 7, 8 Normal mode −1 ±0.5 +1 mV
Full-Scale Error1, 6, 8
Low power mode
−2
±1.0
+2
mV
Gain Drift vs. Temperature9 3 ppm/°C
Power Supply Rejection1 Chop on, ADC = 1 V 55 65 dB
Chop off, ADC = 1 V 53 65 dB
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 7 of 108
Parameter Test Conditions/Comments Min Typ Max Unit
ADC SPECIFICATIONS: ANALOG
INPUT
Internal VREF = 1.2 V
Main Channel
Absolute Input Voltage Range Applies to both VIN+ and VIN 0.1 VDD − 0.7 V
Input Voltage Range Gain = 11 0 1.2 V
(Differential Voltage Between
AIN+ and AIN–)
Gain = 21 0 600 mV
Gain = 41 0 300 mV
Gain = 81 0 150 mV
Gain = 161 0 75 mV
Gain = 321 0 37.5 mV
Gain = 641 0 18.75 mV
Gain = 1281
0
9.375
mV
Common Mode Voltage, VCM10 VCM = (AIN(+) + AIN(−))/2,
gain = 4 to 128
0.5 V
Input Leakage Current1 ADC0 and ADC1 10 181 nA
ADC2, ADC3, ADC4, and ADC5 15 301 nA
ADC6, ADC7, ADC8, and ADC9,
VREF+, VREF
Measurements are taken when the
ADC is not opearating
15
25
1
nA
Common-Mode Rejection DC1
On ADC Input ADC = 7.8 mV 113 dB
ADC = 1 V1 95 dB
Common-Mode Rejection
50 Hz/60 Hz1
50 Hz/60 Hz ± 1 Hz, 16.6 Hz and
50 Hz update rate, chop on
ADC = 7.8 mV, range ± 20 mV 95 dB
ADC = 1 V, range ± 1.2 V 90 dB
Normal-Mode Rejection
50 Hz/60 Hz1
On ADC Input 50 Hz/60 Hz ± 1 Hz, 16.6 Hz fADC,
chop on
75 dB
50 Hz/60 Hz ± 1 Hz, 16.6 Hz fADC,
chop off
67 dB
Auxiliary Channel
Absolute Input Voltage
Range1
Buffer enabled 0.1 AVDD0.1 V
Buffer disabled AGND AVDD V
Input Voltage Range
Range-based reference source
0
1.2
V
Common-Mode Rejection DC1
On ADC Input ADC = 1 V1 87 dB
Common-Mode Rejection
50 Hz/60 Hz1
50 Hz/60 Hz ± 1 Hz, 16.6 Hz and
50 Hz update rate, chop on
ADC = 1 V, range ± 1.2 V
90
dB
Normal-Mode Rejection
50 Hz/60 Hz1
On ADC Input 50 Hz/60 Hz ± 1 Hz, 16.6 Hz fADC,
chop on
75 dB
50 Hz/60 Hz ± 1 Hz, 16.6 Hz fADC,
chop off
67 dB
VOLTAGE REFERENCE
ADC Precision Reference
Internal V
REF
1.2
V
Initial Accuracy Measured at TA = 25°C −0.1 +0.1 %
Reference Temperature
Coefficient (Tempco)1, 11
−20 ±10 +20 ppm/°C
Power Supply Rejection
1
70
dB
External Reference Input Range12 0.1 AVDD V
VREF Divide-by-2 Initial Error1 0.1 %
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 8 of 108
Parameter Test Conditions/Comments Min Typ Max Unit
DAC CHANNEL SPECIFICATIONS RL = 5 kΩ, CL = 100 pF
Voltage Range 0 VREF V
0 AVDD 0.2 V
DAC 12-BIT MODE
DC Specifications13
Resolution 12 Bits
Relative Accuracy ±2 LSB
Differential Nonlinearity Guaranteed monotonic ±0.2 ±1 LSB
Offset Error 1.2 V internal reference ±2 ±15 mV
Gain Error VREF range (reference = 1.2 V) ±1 %
AVDD range ±1 %
Gain Error Mismatch 0.1 % of full
scale on
DAC
DAC 16-BIT MODE1 Only monotonic to 14 bits
DC Specifications14
Resolution 14 Bits
Relative Accuracy
For 14-bit resolution
±3
LSB
Differential Nonlinearity Guaranteed monotonic (14 bits) ±0.5 ±1 LSB
Offset Error 1.2 V internal reference ±2 ±15 mV
Gain Error
V
REF
range (reference = 1.2 V)
±1
%
AVDD range ±1 %
Gain Error Mismatch 0.1 % of full
scale on
DAC
DAC AC CHARACTERISTICS
Voltage Output Settling Time 10 µs
Digital-to-Analog Glitch Energy 1 LSB change at major carry
(where maximum number of bits
simultaneously change in the
DAC0DAT register)
±20 nV-sec
TEMPERATURE SENSOR1, 15 After user calibration
Accuracy MCU in power-down or standby
mode
±4 °C
Voltage Output at 0°C Typical value 96 mV
Voltage Tempco Typical value 0.28 mV/°C
Thermal Impedance
48-lead LFCSP
27
°C/W
48-lead LQFP 55 °C/W
32-lead LFCSP 30 °C/W
GROUND SWITCH1
RON 10
Input Leakage 15 nA
POWER-ON RESET (POR)
POR Trip Level1 Refers to voltage at DVDD pin
Power-on level 2.0 V
Power-down level 2.25 V
RESET Timeout from POR Maximum supply ramp between
1.8 V and 2.25 V; after POR trip,
DVDD must reach 2.25 V within
this time limit
128 ms
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 9 of 108
Parameter Test Conditions/Comments Min Typ Max Unit
EXCITATION CURRENT SOURCES
Output Current Available from each current
source
200 1000 μA
Initial Tolerance at 25°C ±5 %
Drift1 0.06 %/°C
Initial Current Matching at 25°C Matching between both current
sources
±0.5 %
Drift Matching1 20 ppm/°C
Line Regulation (AVDD)1 AVDD = 2.5 V ± 5% 0.2 %/V
Output Compliance1 AGND30 mV AVDD0.7 V V
WATCHDOG TIMER (WDT)
Timeout Period1
32.768 kHz clock, 256 prescale
0.008
512
sec
Timeout Step Size 7.8 ms
FLASH/EE MEMORY1
Endurance16 10,000 Cycles
Data Retention17 20 Years
DIGITAL INPUTS
All digital inputs except NTRST
Input Leakage Current Input (high) = DVDD ±1 ±10 µA
Input Pull-Up Current Input (low) = 0 V 10 20 80 µA
Input Capacitance 10 pF
Input Leakage Current NTRST only: input (low) = 0 V ±1 ±10 µA
Input Pull-Down Current NTRST only: input (high) = DVDD 30 55 100 µA
LOGIC INPUTS1 All logic inputs
Input Low Voltage (VINL) 0.4 V
Input High Voltage (VINH) 2.0 V
LOGIC OUTPUTS1 All logic outputs except XTALO
Output Low Voltage (VOL) ISOURCE = 1.6 mA 0.6 V
Output High Voltage (VOH) ISOURCE = 1.6 mA 2.0 V
CRYSTAL OSCILLATOR1
Logic Inputs, XTALI Only
Input Low Voltage (VINL)
0.8
V
Input High Voltage (VINH) 1.7 V
XTALI Capacitance 12 pF
XTALO Capacitance
12
pF
ON-CHIP OSCILLATORS
Oscillator 32,768 kHz
Accuracy −3 +3 %
MCU CLOCK RATE Eight programmable core clock
selections within this range: binary
divisions 1, 2, 4, 8 . . . 64, 128
0.08 1.28 10.24 MHz
Using an External Clock to
P2.0/EXTCLK Pin
0.08 10.24 MHz
MCU START-UP TIME
At Power-On Includes kernel power-on
execution time
134 ms
After Reset Event Includes kernel power-on
execution time
5 ms
From MCU Power-Down
PLL On
Wake-Up from Interrupt CD = 0 4.8 μs
PLL Off
Wake-Up from Interrupt CD = 0 66 μs
Internal PLL Lock Time 1 ms
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 10 of 108
Parameter Test Conditions/Comments Min Typ Max Unit
POWER REQUIREMENTS
Power Supply Voltages
DVDD (±5%) 2.375 2.5 2.625 V
AVDD (±5%) 2.375 2.5 2.625 V
Power Consumption
IDD (MCU Normal Mode)18 MCU clock rate = 10.24 MHz,
ADC0 on
6 10 mA
MCU clock rate = 640 kHz,
ADC0 on, G = 4, ADC1/DAC off, SPI
on; POWCON1 = 0x4
Full temperature range 3.1 mA
Reduced temperature range
−40°C to +85°C1
2.74 mA
IDD (MCU Powered Down)1 Full temperature range 55 350 µA
Reduced temperature range
−40°C to +85°C
55 120 µA
IDD (Primary ADC) PGA enabled, normal mode/low
power mode; current is
dependent on gain setting
0.6/0.3 mA
ADC0 on, G = 1, normal mode 0.03 mA
ADC0 on, G = 4, normal mode 0.44 mA
ADC0 on, G = >128, normal mode 0.63 mA
IDD (Auxiliary ADC) Normal mode/low power mode 0.35/0.1 mA
IDD (DAC) DAC0CON = 0x10 0.33 mA
PWM 0.34 mA
1 These numbers are not production tested but are guaranteed by design and/or characterization data at production release.
2 Valid for primary ADC gain setting of PGA = 4 to 64.
3 Tested at gain range = 4 after initial offset calibration.
4 Measured with an internal short. A system zero-scale calibration removes this error. ADC factory calibration done with chop off.
5 Measured with an internal short.
6 These numbers do not include internal reference temperature drift.
7 Factory calibrated at gain = 1.
8 System calibration at a specific gain range removes the error at this gain range. ADC factory calibration done with chop off.
9 Measured using an external reference.
10 Ensure common mode voltage is set so VIN*Gain setting, which is the PGA output voltage, is between 0.1V and VDD0.7V. 900 mV is an optimum value for the
common mode voltage across all gains.
11 Measured using the box method.
12 References up to AVDD are accommodated by setting ADC0CON Bit 12.
13 Reference DAC linearity is calculated using a reduced code range of 171 to 4095.
14 Reference DAC linearity is calculated using a reduced code range of 2731 to 65,535.
15 Die temperature.
16 Endurance is qualified to 10,000 cycles as per JEDEC Std. 22 Method A117 and measured at −40°C, +25°C, and +125°C. Typical endurance at 25°C is 170,000 cycles.
17 Retention lifetime equivalent at junction temperature (TJ) = 85°C as per JEDEC Std. 22 Method A117. Retention lifetime derates with junction temperature.
18 Typical additional supply current consumed during Flash/EE memory program and erase cycles is 7 mA and 5 mA, respectively.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 11 of 108
TIMING SPECIFICATIONS
I2C Timing
Table 2. I2C® Timing in Standard Mode (100 kHz)
Slave
Parameter Description Min Max Unit
tL SCLOCK low pulse width 4.7 μs
tH SCLOCK high pulse width 4.0 ns
tSHD Start condition hold time 4.0 μs
tDSU Data setup time 250 ns
tDHD Data hold time 0 3.45 μs
tRSU Setup time for repeated start 4.7 μs
tPSU Stop condition setup time 4.0 μs
tBUF Bus-free time between a stop condition and a start condition 4.7 μs
tR Rise time for both CLOCK and SDATA 1 μs
tF Fall time for both CLOCK and SDATA 300 ns
0
7079-029
S
DATA (I/O)
t
BUF
MSB LSB ACK MSB
1982–71
SCLK (I)
PS
STOP
CONDITION START
CONDITION
S(R)
REPEATED
START
t
R
t
F
t
F
t
R
t
H
t
L
t
DSU
t
DHD
t
RSU
t
DHD
t
DSU
t
SHD
t
PSU
Figure 2. I2C Compatible Interface Timing
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 12 of 108
SPI Timing
Table 3. SPI Master Mode Timing (Phase Mode = 1)
Parameter Description Min Typ Max Unit
tSL SCLOCK low pulse width (SPIDIV + 1) × tHCLK ns
tSH SCLOCK high pulse width (SPIDIV + 1) × tHCLK ns
tDAV Data output valid after SCLOCK edge 25 ns
tDSU Data input setup time before SCLOCK edge1 1 × tUCLK ns
tDHD Data input hold time after SCLOCK edge1 2 × tUCLK ns
tDF Data output fall time 30 40 ns
tDR Data output rise time 30 40 ns
tSR SCLOCK rise time 30 40 ns
tSF SCLOCK fall time 30 40 ns
1 tUCLK = 97.6 ns. It corresponds to the 10.24 MHz internal clock from the PLL.
0
7079-030
SCLOCK
(POL ARIT Y = 0)
SCLOCK
(POL ARIT Y = 1)
MOSI MSB BITS 6 TO 1 LSB
MISO MSB IN BITS 6 TO 1 LSB IN
t
SH
t
SL
t
SR
t
SF
t
DR
t
DF
t
DAV
t
DSU
t
DHD
Figure 3. SPI Master Mode Timing (Phase Mode = 1)
Table 4. SPI Master Mode Timing (Phase Mode = 0)
Parameter Description Min Typ Max Unit
tSL SCLOCK low pulse width (SPIDIV + 1) × tHCLK ns
tSH SCLOCK high pulse width (SPIDIV + 1) × tHCLK ns
tDAV Data output valid after SCLOCK edge 25 ns
tDOSU Data output setup before SCLOCK edge 90 ns
tDSU Data input setup time before SCLOCK edge1 1 × tUCLK ns
tDHD Data input hold time after SCLOCK edge1 2 × tUCLK ns
tDF Data output fall time 30 40 ns
tDR Data output rise time 30 40 ns
tSR SCLOCK rise time 30 40 ns
tSF SCLOCK fall time 30 40 ns
1 tUCLK = 97.6 ns. It corresponds to the 10.24 MHz internal clock from the PLL.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 13 of 108
07079-031
SCLOCK
(POL ARIT Y = 0)
SCLOCK
(POL ARIT Y = 1)
tSH tSL tSR tSF
MOSI MSB BITS 6 TO 1 LSB
MISO MSB IN BITS 6 TO 1 LSB IN
tDR
tDF
tDAV
tDOSU
tDSU
tDHD
Figure 4. SPI Master Mode Timing (Phase Mode = 0)
Table 5. SPI Slave Mode Timing (Phase Mode = 1)
Parameter Description Min Typ Max Unit
tCSE CSE to SCLOCK edge1 (2 × tHCLK) + (2 × tUCLK) ns
tSL SCLOCK low pulse width (SPIDIV + 1) × tHCLK ns
tSH SCLOCK high pulse width (SPIDIV + 1) × tHCLK ns
tDAV Data output valid after SCLOCK edge 40 ns
tDSU Data input setup time before SCLOCK edge1 1 × tUCLK ns
tDHD Data input hold time after SCLOCK edge1 2 × tUCLK ns
tDF Data output fall time 30 40 ns
tDR Data output rise time 30 40 ns
tSR SCLOCK rise time 1 ns
tSF SCLOCK fall time 1 ns
tSFS CSE high after SCLOCK edge 0 ns
1 tUCLK = 97.6 ns. It corresponds to the 10.24 MHz internal clock from the PLL.
07079-032
SCLOCK
(POL ARIT Y = 0)
CS
SCLOCK
(POL ARIT Y = 1)
t
SH
t
SL
t
SR
t
SF
t
SFS
MISO MSB BITS 6 TO 1 LSB
MOSI MSB IN BITS 6 TO 1 LSB IN
t
DHD
t
DSU
t
DAV
t
DR
t
DF
t
CS
Figure 5. SPI Slave Mode Timing (Phase Mode = 1)
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 14 of 108
Table 6. SPI Slave Mode Timing (Phase Mode = 0)
Parameter Description Min Typ Max Unit
tCSE CSE to SCLOCK edge1 (2 × tHCLK) + (2 × tUCLK) ns
tSL SCLOCK low pulse width (SPIDIV + 1) × tHCLK ns
tSH SCLOCK high pulse width (SPIDIV + 1) × tHCLK ns
tDAV Data output valid after SCLOCK edge 40 ns
tDSU Data input setup time before SCLOCK edge1 1 × tUCLK ns
tDHD Data input hold time after SCLOCK edge1 2 × tUCLK ns
tDF Data output fall time 30 40 ns
tDR Data output rise time 30 40 ns
tSR SCLOCK rise time 1 ns
tSF SCLOCK fall time 1 ns
tDOCS Data output valid after CSE edge 10 ns
tSFS CSE high after SCLOCK edge 0 ns
1 tUCLK = 97.6 ns. It corresponds to the 10.24 MHz internal clock from the PLL.
07079-033
SCLOCK
(POL ARIT Y = 0)
CS
SCLOCK
(POL ARIT Y = 1)
tSH tSL tSR tSF
tSFS
MISO
MOSI MSB I N BI TS 6 TO 1 LSB I N
tDHD
tDSU
MSB BITS 6 TO 1 LSB
tDOCS
tDAV
tDR
tDF
tCS
Figure 6. SPI Slave Mode Timing (Phase Mode = 0)
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 15 of 108
ABSOLUTE MAXIMUM RATINGS
TA = −40°C to +125°C, unless otherwise noted.
Table 7.
Parameter Rating
AGND to DGND to AVDD to DVDD −0.3 V to +0.3 V
Digital I/O Voltage to DGND −0.3 V to +3.6 V
VREF± to AGND −0.3 V to AVDD + 0.3 V
ADC Inputs to AGND −0.3 V to AVDD + 0.3 V
ESD (Human Body Model) Rating
All Pins ±2 kV
125°C
Junction Temperature
Transient 150°C
Continuous 130°C
Lead Temperature
Soldering Reflow (15 sec) 260°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
ESD CAUTION
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 16 of 108
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
TCK
TDI
TDO
DVDD
DGND
P2.1/IRQ3/PWM5
P1.6/PWM4
P1.5/PWM3
P1.4/PWM2
P2.0/IRQ2/PWM0/EXTCLK
P0.4/IRQ0/PWM1
XTALO
P0.3/MOSI/SDA
P0.2/MISO
DVDD
P0.0/SS
P0.1/SCLK/SCL
XTALI
DGND
ADC9
ADC8
ADC6
ADC7
TMS
P1.0/IRQ1/SIN/T0
P1.1/SOUT
P0.5/CTS
P1.3/TRIP
P1.2/SYNC
P0.6/RTS
DVDD
DGND
ADC5/EXT_REF2IN−
DAC0
ADC4/EXT_REF2IN+
ADC3
ADC2
IEXC1
IEXC0
GND_SW
ADC1
ADC0
VREF+
VREF−
AGND
AVDD
RESET
07079-002
13
14
15
16
17
18
19
20
21
22
23
24
48
47
46
45
44
43
42
41
40
39
38
37
1
2
3
4
5
6
7
8
9
10
11
12
35
36
34
33
32
31
30
29
28
27
26
25
ADuC7060
TOP VI EW
(No t t o Scal e)
PIN 1
INDICATOR
NOTES
1. THE LFCS P _V Q O NLY HAS AN E X P OSE D P ADDLE THAT M US T BE LEF T UNCO NNE CTED.
THIS DOES NOT APPLY TO THE LQFP.
NTRST/BM
Figure 7. 48-Lead LQFP and 48-Lead LFCSP_VQ Pin Configuration
Table 8. ADuC7060 Pin Function Descriptions
Pin
No. Mnemonic Type1 Description
0 EP Exposed Paddle. The LFCSP_VQ only has an exposed paddle that must be left unconnected.
This does not apply to the LQFP.
1 RESET I Reset. Input pin, active low. An external 1 kΩ pull-up resistor is recommended with this pin.
2 TMS I JTAG Test Mode Select. Input pin used for debug and download. An external pull-up resistor
(~100 kΩ) should be added to this pin.
3 P1.0/IRQ1/SIN/T0 I/O General-Purpose Input and General Purpose Output P1.0/External Interrupt Request 1/Serial
Input/Timer0 Input. This is a multifunction input/output pin offering four functions.
4 P1.1/SOUT I/O General-Purpose Input and General-Purpose Output P1.1/Serial Output. This is a dual function
input/output pin.
5 P1.2/SYNC I/O General-Purpose Input and General-Purpose Output P1.2/PWM External Sync Input. This is a
dual function input/output pin.
6 P1.3/TRIP I/O General-Purpose Input and General-Purpose Output P1.3/PWM External Trip Input. This is a
dual function input/output pin.
7 P0.5/CTS I/O General-Purpose Input and General-Purpose Output P0.5/Clear-to-Send Signal in UART Mode.
8 P0.6/RTS I/O General-Purpose Input and General-Purpose Output P0.6/Request-to-Send Signal in UART Mode.
9 DVDD S Digital Supply Pin.
10 DGND S Digital Ground.
11 DAC0 O DAC Output. Analog output pin.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 17 of 108
Pin
No. Mnemonic Type1 Description
12 ADC5/EXT_REF2IN− I Single-Ended or Differential Analog Input 5/External Reference Negative Input. This is a dual
function analog input pin. ADC5 serves as the analog input for the auxiliary ADC. EXT_REF2IN−
serves as the external reference negative input by ADC for the auxiliary channel.
13 ADC4/EXT_REF2IN+ I Multifunction Analog Input Pin. This pin can be used for the single-ended or differential Analog
Input 4, which is the analog input for the auxiliary ADC, or it can be used for the external
reference positive input for the auxiliary channel.
14 ADC3 I Single-Ended or Differential Analog Input 3. Analog input for the primary and auxiliary ADCs.
15
ADC2
I
Single-Ended or Differential Analog Input 2. Analog input for the primary and auxiliary ADCs.
16 IEXC1 O Programmable Current Source. Analog output pin.
17 IEXC0 O Programmable Current Source. Analog output pin.
18 GND_SW I Switch to Internal Analog Ground Reference. When this input pin is not used, connect it
directly to the AGND system ground.
19 ADC1 I Single-Ended or Differential Analog Input 1. Analog input for the primary ADC. Negative differential
input for primary ADC.
20 ADC0 I Single-Ended or Differential Analog Input 0. Analog input for the primary ADC. Positive differential
input for primary ADC.
21 VREF+ I External Reference Positive Input for the Primary Channel. Analog input pin.
22 VREF I External Reference Negative Input for the Primary Channel. Analog input pin.
23 AGND S Analog Ground.
24
AVDD
S
Analog Supply Pin.
25 ADC6 I Analog Input 6 for Auxiliary ADC. Single-ended or differential Analog Input 6.
26 ADC7 I Analog Input 7 for Auxiliary ADC. Single-ended or differential Analog Input 7.
27 ADC8 I Analog Input 8 for Auxiliary ADC. Single-ended or differential Analog Input 8.
28 ADC9 I Analog Input 9 for Auxiliary ADC. Single-ended or differential Analog Input 9.
29 DGND S Digital Ground.
30 DVDD S Digital Supply Pin.
31 P0.0/SS I/O General-Purpose Input and General-Purpose Output P0.0/SPI Slave Select Pin (Active Low). This
is a dual function input/output pin.
32 P0.1/SCLK/SCL I/O General-Purpose Input and General-Purpose Output P0.1/SPI Clock Pin/I2C Clock Pin. This is a
triple function input/output pin.
33
P0.2/MISO
I/O
General-Purpose Input and General-Purpose Output P0.2/SPI Master Input Slave Output. This is
a dual function input/output pin.
34 P0.3/MOSI/SDA I/O General-Purpose Input and General-Purpose Output P0.3/SPI Master Output Slave Input/I2C
Data Pin. This is a triple function input/output pin.
35 XTALO O External Crystal Oscillator Output Pin.
36 XTALI I External Crystal Oscillator Input Pin.
37
P0.4/IRQ0/PWM1
I/O
General-Purpose Input and General-Purpose Output P0.4/External Interrupt Request 0/PWM1
Output. This is a triple function input/output pin.
38 P2.0/IRQ2/PWM0/EXTCLK I/O General-Purpose Input and General-Purpose Output P2.0/External Interrupt Request 2/PWM0
Output/External Clock Input. This is a multifunction input/output pin.
39 P1.4/PWM2 I/O General-Purpose Input and General-Purpose Output P1.4/PWM2 Output. This is a dual function
input/output pin.
40 P1.5/PWM3 I/O General-Purpose Input and General-Purpose Output P1.5/PWM3 Output. This is a dual function
input/output pin.
41 P1.6/PWM4 I/O General-Purpose Input and General-Purpose Output P1.6/PWM4 Output. This is a dual function
input/output pin.
42 P2.1/IRQ3/PWM5 I/O General-Purpose Input and General-Purpose Output P2.1/External Interrupt Request 3/PWM5
Output. This is a triple function input/output pin.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 18 of 108
Pin
No. Mnemonic Type1 Description
43 DGND S Digital Ground.
44 DVDD S Digital Supply Pin.
45 NTRST/BM I JTAG Reset/Boot Mode. Input pin used for debug and download only and boot mode (BM). The
ADuC7060 enters serial download mode if BM is low at reset and executes code if BM is pulled
high at reset through a 13 kΩ resistor.
46 TDO O JTAG Data Out. Output pin used for debug and download only.
47 TDI I JTAG Data In. Input pin used for debug and download only. Add an external pull-up resistor
(~100 kΩ) to this pin.
48 TCK I JTAG Clock Pin. Input pin used for debug and download only. Add an external pull-up resistor
(~100 kΩ) to this pin.
1 I = input, O = output, I/O = input/output, and S = supply.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 19 of 108
PIN 1
INDICATOR
1RESET 2TMS 3
P1.0/IRQ1/SIN/T0 4
P1.1/SOUT 5DAC0 6
ADC5/EXT_REF2IN− 7ADC4/EXT_REF2IN+ 8
ADC3
24 XTALI
23 XTALO
22 P0.3/MOSI/SDA/ADC9
21 P0.2/MISO/ADC8
20 P0.1/SCLK/SCL/ADC7
19 P0.0/SS/ADC6
18 VREF–
17 VREF+
9
ADC2 10
IEXC1 11
IEXC0 12
GND_SW 13
ADC1 14
ADC0 15
AGND 16
AVDD
32 TCK
31 TDI
30 TDO
29 NTRST/BM
28 DVDD
27 DGND
26 P2.0/IRQ2/PWM0
25 P0.4/IRQ0/PWM1
ADuC7061
TOP VI EW
(No t t o Scal e)
07079-003
NOTES
1. THE 32-LEAD LF CSP_VQ HAS AN EXPOSED PADDLE. THIS EXPOSED
PADDL E M US T BE L E FT UNCONNECT E D.
Figure 8. 32-Lead LFCSP Pin Configuration
Table 9. ADuC7061 Pin Function Descriptions
Pin No. Mnemonic Type1 Description
0 EP Exposed Paddle. The 32-lead LFCSP_VQ has an exposed paddle that must be left unconnected.
1 RESET I Reset Pin. Input pin, active low. An external 1 kΩ pull-up resistor is recommended with this pin.
2
TMS
I
JTAG Test Mode Select. Input pin used for debug and download. An external pull-up resistor
(~100 kΩ) should be added to this pin.
3 P1.0/IRQ1/SIN/T0 I/O General-Purpose Input and General-Purpose Output P1.0/External Interrupt Request 1/Serial
Input/Timer0 Input. This is a multifunction input/output pin offering four functions.
4 P1.1/SOUT I/O General-Purpose Input and General-Purpose Output P1.1/Serial Output. This is a dual function
input/output pin.
5 DAC0 O DAC Output. Analog output pin.
6 ADC5/EXT_REF2IN− I Single-Ended or Differential Analog Input 5/External Reference Negative Input. This is a dual
function analog input pin. The ADC5 serves as the analog input for the auxiliary ADC. The
EXT_REF2IN− serves as the external reference negative input by ADC for the auxiliary channel.
7 ADC4/EXT_REF2IN+ I Multifunction Analog Input Pin. This pin can be used for the single-ended or differential Analog
Input 4, which is the analog input for the auxiliary ADC, or it can be used for the external
reference positive input for the auxiliary channel.
8 ADC3 I Single-Ended or Differential Analog Input 3. Analog input for primary and auxiliary ADCs.
9 ADC2 I Single-Ended or Differential Analog Input 2. Analog input for primary and auxiliary ADCs.
10 IEXC1 O Programmable Current Source. Analog output pin.
11
IEXC0
O
Programmable Current Source. Analog output pin.
12
GND_SW
I
Switch to Internal Analog Ground Reference. When this input pin is not used, connect it directly
to the AGND system ground.
13 ADC1 I Single-Ended or Differential Analog Input 1. Analog input for the primary ADC. Negative differential
input for primary ADC.
14 ADC0 I Single-Ended or Differential Analog Input 0. Analog input for the primary ADC. Positive differential
input for primary ADC.
15 AGND S Analog Ground.
16 AVDD S Analog Supply Pin.
17 VREF+ I External Reference Positive Input for the Primary Channel. Analog input pin.
18 VREF I External Reference Negative Input for the Primary Channel. Analog input pin.
19 P0.0/SS/ADC6 I/O General-Purpose Input and General-Purpose Output P0.0/SPI Slave Select (Active Low)/Input to
Auxiliary ADC6. This is a multifunction input/output pin. Single-ended or differential Analog
Input 6. Analog input for the auxiliary ADC.
20 P0.1/SCLK/SCL/ADC7 I/O General-Purpose Input and General-Purpose Output P0.1/SPI Clock/I2C Clock/Input to Auxiliary
ADC7. This is a multifunction input/output pin. Single-ended or differential Analog Input 7.
Analog input for the auxiliary ADC.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 20 of 108
Pin No. Mnemonic Type1 Description
21 P0.2/MISO/ADC8 I/O General-Purpose Input and General-Purpose Output P0.2/SPI Master Input Slave
Output/Auxiliary ADC8 Input. This is a triple function input/output pin. Single-ended or
differential Analog Input 8. Analog input for the auxiliary ADC.
22 P0.3/MOSI/SDA/ADC9 I/O General-Purpose Input and General-Purpose Output P0.3/SPI Master Output Slave Input/I2C
Data Pin/Auxiliary ADC9 Input. This is a multifunction input/output pin. Single-ended or
differential Analog Input 9. Analog input for the auxiliary ADC.
23 XTALO O External Crystal Oscillator Output Pin.
24 XTALI I External Crystal Oscillator Input Pin.
25 P0.4/IRQ0/PWM1 I/O General-Purpose Input and General-Purpose Output P0.4/External Interrupt Request 0/PWM1
Output. This is a triple function input/output pin.
26 P2.0/IRQ2/PWM0 I/O General-Purpose Input and General-Purpose Output P2.0/External Interrupt Request 2/PWM0
Output. This is a triple function input/output pin.
27 DGND S Digital Ground.
28 DVDD S Digital Supply Pin.
29 NTRST/BM I JTAG Reset/Boot Mode. Input pin used for debug and download only and boot mode (BM). The
ADuC7061 enters serial download mode if BM is low at reset and executes code if BM is pulled
high at reset through a 13 kΩ resistor.
30 TDO O JTAG Data Out. Output pin used for debug and download only.
31 TDI I JTAG Data In. Input pin used for debug and download only. Add an external pull-up resistor
(~100 kΩ) to this pin.
32 TCK I JTAG Clock. Input pin used for debug and download only. Add an external pull-up resistor
(~100 kΩ) to this pin.
1 I = input, O = output, I/O = input/output, and S = supply.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 21 of 108
TERMINOLOGY
Conversion Rate
The conversion rate specifies the rate at which an output result
is available from the ADC, when the ADC has settled.
The sigma-delta (Σ-Δ) conversion techniques used on this part
mean that whereas the ADC front-end signal is oversampled at
a relatively high sample rate, a subsequent digital filter is used to
decimate the output, giving a valid 24-bit data conversion result
at output rates from 1 Hz to 8 kHz.
Note that, when software switches from one input to another
(on the same ADC), the digital filter must first be cleared and
then allowed to average a new result. Depending on the con-
figuration of the ADC and the type of filter, this can take
multiple conversion cycles.
Integral Nonlinearity (INL)
INL is the maximum deviation of any code from a straight line
passing through the endpoints of the transfer function. The end-
points of the transfer function are zero scale, a point ½ LSB
below the first code transition, and full scale, a point ½ LSB
above the last code transition (111 . . . 110 to 111 . . . 111).
The error is expressed as a percentage of full scale.
No Missing Codes
No missing codes is a measure of the differential nonlinearity
of the ADC. The error is expressed in bits and specifies the
number of codes (ADC results) as 2N bits, where N is no
missing codes guaranteed to occur through the full ADC
input range.
Offset Error
Offset error is the deviation of the first code transition ADC
input voltage from the ideal first code transition.
Offset Error Drift
Offset error drift is the variation in absolute offset error with
respect to temperature. This error is expressed as least
significant bits per degree Celsius.
Gain Error
Gain error is a measure of the span error of the ADC. It is a
measure of the difference between the measured and the ideal
span between any two points in the transfer function.
Output Noise
The output noise is specified as the standard deviation (or 1 ×
Sigma) of the distribution of the ADC output codes collected
when the ADC input voltage is at a dc voltage. It is expressed as
micro root mean square. The output, or root mean square (rms)
noise, can be used to calculate the effective resolution of the
ADC as defined by the following equation:
Effective Resolution = log2(Full-Scale Range/rms Noise) bits
The peak-to-peak noise is defined as the deviation of codes that
fall within 6.6 × Sigma of the distribution of ADC output codes
collected when the ADC input voltage is at dc. The peak-to-peak
noise is, therefore, calculated as
6.6 × rms Noise
The peak-to-peak noise can be used to calculate the ADC
(noise free code) resolution for which there is no code flicker
within a 6.6-Sigma limit as defined by the following equation:
Noise Free Code Resolution = log2
NoisePeaktoPeak
RangeScaleFull
bits
Data Sheet Acronyms
ADC analog-to-digital converter
ARM advanced RISC machine
JTAG joint test action group
LSB least significant byte/bit
LVF low voltage flag
MCU microcontroller
MMR memory mapped register
MSB most significant byte/bit
PID protected identifier
POR power-on reset
PSM power supply monitor
rms root mean square
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 22 of 108
OVERVIEW OF THE ARM7TDMI CORE
The ARM7® core is a 32-bit, reduced instruction set computer
(RISC), developed by ARM® Ltd. The ARM7TDMI is a
von Neumann-based architecture, meaning that it uses a single
32-bit bus for instruction and data. The length of the data can
be 8, 16, or 32 bits, and the length of the instruction word is
either 16 bits or 32 bits, depending on the mode in which the
core is operating.
The ARM7TDMI is an ARM7 core with four additional
features, as listed in Table 10.
Table 10. ARM7TDMI Features
Feature Description
T Support for the Thumb® (16-bit) instruction set
D Support for debug
M Enhanced multiplier
I Includes the EmbeddedICE® module to support
embedded system debugging
THUMB MODE (T)
An ARM instruction is 32 bits long. The ARM7TDMI processor
supports a second instruction set compressed into 16 bits, the
Thumb instruction set. Faster code execution from 16-bit memory
and greater code density is achieved by using the Thumb instruc-
tion set, making the ARM7TDMI core particularly suited for
embedded applications.
However, the Thumb mode has three limitations.
Relative to ARM, the Thumb code usually requires more
instructions to perform the same task. Therefore, ARM
code is best for maximizing the performance of time-
critical code in most applications.
The Thumb instruction set does not include some
instructions that are needed for exception handling, so
ARM code can be required for exception handling.
When an interrupt occurs, the core vectors to the interrupt
location in memory and executes the code present at that
address. The first command is required to be in ARM code.
MULTIPLIER (M)
The ARM7TDMI instruction set includes an enhanced
multiplier, with four extra instructions to perform 32-bit by
32-bit multiplication with a 64-bit result, and 32-bit by 32-bit
multiplication-accumulation (MAC) with a 64-bit result.
EmbeddedICE (I)
The EmbeddedICE module provides integrated on-chip debug
support for the ARM7TDMI. The EmbeddedICE module
contains the breakpoint and watchpoint registers that allow
nonintrusive user code debugging. These registers are con-
trolled through the JTAG test port. When a breakpoint or
watchpoint is encountered, the processor halts and enters the
debug state. When in a debug state, the processor registers can
be interrogated, as can the Flash/EE, SRAM, and memory
mapped registers.
ARM7 Exceptions
The ARM7 supports five types of exceptions, with a privileged
processing mode associated with each type. The five types of
exceptions are as follows:
Type 1: normal interrupt or IRQ. This is provided to service
general-purpose interrupt handling of internal and external
events. Note that the ADuC7060/ADuC7061 supports eight
configurable priority levels for all IRQ sources.
Type 2: fast interrupt or FIQ. This is provided to service data
transfer or a communication channel with low latency. FIQ
has priority over IRQ. Note that the ADuC7060/ADuC7061
supports eight configurable priority levels for all FIQ sources.
Type 3: memory abort (prefetch and data).
Type 4: attempted execution of an undefined instruction.
Type 5: software interrupts (SWI) instruction that can be used
to make a call to an operating system.
Typically, the programmer defines interrupts as IRQ, but for
higher priority interrupts, the programmer can define
interrupts as the FIQ type.
The priority of these exceptions and vector addresses are listed
in Table 11.
Table 11. Exception Priorities and Vector Addresses
Priority Exception Address
1 Hardware reset 0x00
2
Memory abort (data)
0x10
3 FIQ 0x1C
4 IRQ 0x18
5 Memory abort (prefetch) 0x0C
6 Software interrupt1 0x08
6 Undefined instruction1 0x04
1 A software interrupt and an undefined instruction exception have the same
priority and are mutually exclusive.
The exceptions listed in Table 11 are located from 0x00 to 0x1C,
with a reserved location at 0x14.
ARM REGISTERS
The ARM7TDMI has 16 standard registers. R0 to R12 are for
data manipulation, R13 is the stack pointer, R14 is the link
register, and R15 is the program counter that indicates the
instruction currently being executed. The link register contains
the address from which the user has branched (when using the
branch and link command) or the command during which an
exception occurred.
The stack pointer contains the current location of the stack.
Generally, on an ARM7TDMI, the stack starts at the top of the
available RAM area and descends using the area as required. A
separate stack is defined for each of the exceptions. The size of
each stack is user configurable and is dependent on the target
application. When programming using high level languages,
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 23 of 108
such as C, it is necessary to ensure that the stack does not overflow.
This is dependent on the performance of the compiler that is used.
When an exception occurs, some of the standard registers are
replaced with registers specific to the exception mode. All
exception modes have replacement banked registers for the
stack pointer (R13) and the link register (R14) as represented
in Figure 9. The FIQ mode has more registers (R8 to R12)
supporting faster interrupt processing. With the increased
number of noncritical registers, the interrupt can be processed
without the need to save or restore these registers, thereby
reducing the response time of the interrupt handling process.
More information relative to the programmer’s model and the
ARM7TDMI core architecture can be found in ARM7TDMI
technical and ARM architecture manuals available directly from
ARM Ltd.
USABLE IN USE R M ODE
SYSTEM MODES ONLY
SPSR_UND
SPSR_IRQ
SPSR_ABT
SPSR_SVC
R8_FIQ
R9_FIQ
R10_FIQ
R11_FIQ
R12_FIQ
R13_FIQ
R14_FIQ
R13_UND
R14_UND
R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15 (PC)
R13_IRQ
R14_IRQ
R13_ABT
R14_ABT
R13_SVC
R14_SVC
SPSR_FIQ
CPSR
USER MODE FIQ
MODE SVC
MODE ABORT
MODE IRQ
MODE UNDEFINED
MODE
07079-004
Figure 9. Register Organization
INTERRUPT LATENCY
The worst-case latency for an FIQ consists of the longest time
that the request can take to pass through the synchronizer, plus
the time for the longest instruction to complete (the longest
instruction is an LDM) that loads all the registers including the
PC, plus the time for the data abort entry, plus the time for FIQ
entry. At the end of this time, the ARM7TDMI is executing the
instruction at 0x1C (FIQ interrupt vector address). The maximum
total time is 50 processor cycles, or just over 4.88 μs in a system
using a continuous 10.24 MHz processor clock. The maximum
IRQ latency calculation is similar but must allow for the FIQ
having higher priority, which can delay entry into the IRQ
handling routine for an arbitrary length of time. This time can be
reduced to 42 cycles if the LDM command is not used; some
compilers have an option to compile without using this command.
Another option is to run the part in Thumb mode where this
time is reduced to 22 cycles.
The minimum latency for FIQ or IRQ interrupts is five cycles.
This consists of the shortest time that the request can take through
the synchronizer plus the time to enter the exception mode.
Note that the ARM7TDMI initially (first instruction) runs in
ARM (32-bit) mode when an exception occurs. The user can
immediately switch from ARM mode to Thumb mode if required,
for example, when executing interrupt service routines.
MEMORY ORGANIZATION
The ARM7, a von Neumann architecture MCU core, sees
memory as a linear array of 232-byte locations. As shown in
Figure 10, the ADuC7060/ADuC7061 maps this into four
distinct user areas: a memory area that can be remapped, an
SRAM area, a Flash/EE area, and a memory mapped register
(MMR) area.
The first 30 kB of this memory space is used as an area into
which the on-chip Flash/EE or SRAM can be remapped. Any
access, either reading or writing, to an area not defined in the
memory map results in a data abort exception.
Memory Format
The ADuC7060/ADuC7061 memory organization is configured
in little endian format: the least significant byte is located in the
lowest byte address and the most significant byte in the highest
byte address (see Figure 11).
0x00040FFF
0x00040000
0xFFFFFFFF
0xFFFF0000 MMRs
0x00087FFF
0x00080000 FLASH/EE
SRAM
0x00007FFF
0x00000000 REMAPPABLE MEMORY SPACE
(FLASH/EE OR SRAM)
RESERVED
RESERVED
RESERVED
07079-005
Figure 10. Memory Map
BIT 31
BYTE 2
A
6
2
.
.
.
BYTE 3
B
7
3
.
.
.
BYTE 1
9
5
1
.
.
.
BYTE 0
8
4
0
.
.
.
BIT 0
32 BIT S
0xFFFFFFFF
0x00000004
0x00000000
07079-006
Figure 11. Little Endian Format
SRAM
The ADuC7060/ADuC7061 features 4 kB of SRAM, organized
as 1024 × 32 bits, that is, 1024 words located at 0x40000. The
RAM space can be used as data memory as well as volatile
program space.
ARM code can run directly from SRAM at full clock speed
given that the SRAM array is configured as a 32-bit wide memory
array. SRAM is read/writable in 8-, 16-, and 32-bit segments.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 24 of 108
Remap
The ARM exception vectors are all situated at the bottom of the
memory array, from Address 0x00000000 to Address 0x00000020.
By default, after a reset, the Flash/EE memory is logically
mapped to Address 0x00000000. It is possible to logically remap
the SRAM to Address 0x00000000 by setting Bit 0 of the remap
MMR located at 0xFFFF0220. To revert Flash/EE to 0x00000000,
Bit 0 of remap is cleared.
It is sometimes desirable to remap RAM to 0x00000000 to optimize
the interrupt latency of the ADuC7060/ADuC7061 because code
can run in full 32-bit ARM mode and at maximum core speed.
Note that, when an exception occurs, the core defaults to ARM
mode.
Remap Operation
When a reset occurs on the ADuC7060/ADuC7061, execution
starts automatically in the factory programmed internal
configuration code. This so-called kernel is hidden and cannot
be accessed by user code. If the ADuC7060/ADuC7061 is in
normal mode, it executes the power-on configuration routine of
the kernel and then jumps to the reset vector,
Address 0x00000000, to execute the user’s reset exception routine.
Because the Flash/EE is mirrored at the bottom of the memory
array at reset, the reset routine must always be written in
Flash/EE.
The remap command must be executed from the absolute Flash/EE
address and not from the mirrored, remapped segment of memory,
because this may be replaced by SRAM. If a remap operation is
executed while operating code from the mirrored location, pre-
fetch/data aborts can occur, or the user can observe abnormal
program operation. Any kind of reset logically remaps the Flash/EE
memory to the bottom of the memory array.
Remap Register
Name: Remap
Address: 0xFFFF0220
Default value: 0x0000
Access: Read and write
Function: This 8-bit register allows user code to remap
either RAM or Flash/EE space into the bottom
of the ARM memory space starting at
Address 0x00000000.
Table 12. Remap MMR Bit Designations
Bit Description
7:1 Reserved. These bits are reserved and should be written
as 0 by user code.
0 Remap bit.
Set by user to remap the SRAM to 0x00000000.
Cleared automatically after reset to remap the Flash/EE
memory to 0x00000000.
FLASH/EE CONTROL INTERFACE
Serial and JTAG programming use the Flash/EE control
interface, which includes the eight MMRs outlined in this
section. Note that the flash page size is 512 bytes.
FEESTA Register
FEESTA is a read-only register that reflects the status of the
flash control interface as described in Table 13.
Name: FEESTA
Address: 0xFFFF0E00
Default value: 0x0020
Access: Read
Table 13. FEESTA MMR Bit Designations
Bit Description
15:6 Reserved.
5 Reserved.
4 Reserved.
3 Flash interrupt status bit. Set automatically when an
interrupt occurs, that is, when a command is complete
and the Flash/EE interrupt enable bit in the FEEMOD
register is set. Cleared when reading the FEESTA
register.
2 Flash/EE controller busy. Set automatically when the
controller is busy. Cleared automatically when the
controller is not busy.
1 Command fail. Set automatically when a command
completes unsuccessfully. Cleared automatically when
reading the FEESTA register.
0 Command pass. Set by the MicroConverter® when a
command completes successfully. Cleared
automatically when reading the FEESTA register.
FEEMOD Register
FEEMOD sets the operating mode of the flash control interface.
Table 14 lists FEEMOD MMR bit designations.
Name: FEEMOD
Address: 0xFFFF0E04
Default value: 0x0000
Access: Read and write
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 25 of 108
Table 14. FEEMOD MMR Bit Designations
Bit Description
15:9 Reserved.
8 Reserved. Always set this bit to 1.
7:5 Reserved. Always set these bits to 0 except when
writing keys.
4 Flash/EE interrupt enable.
Set by user to enable the Flash/EE interrupt. The
interrupt occurs when a command is complete.
Cleared by user to disable the Flash/EE interrupt.
3
Erase/write command protection.
Set by user to enable the erase and write commands.
Cleared to protect the Flash/EE against the erase/write
command.
2:0
Reserved. Always set these bits to 0.
FEECON Register
FEECON is an 8-bit command register. The commands are
described in Table 15.
Name: FEECON
Address: 0xFFFF0E08
Default value: 0x07
Access: Read and write
Table 15. Command Codes in FEECON
Code Command Description
0x001 Null Idle state.
0x011 Single read Load FEEDAT with the 16-bit data. Indexed by FEEADR.
0x021 Single write Write FEEDAT at the address pointed to by FEEADR. This operation takes 50 μs.
0x031 Erase/write Erase the page indexed by FEEADR and write FEEDAT at the location pointed to by FEEADR. This operation takes
approximately 24 ms.
0x041 Single verify Compare the contents of the location pointed to by FEEADR to the data in FEEDAT. The result of the
comparison is returned in FEESTA Bit 0 and Bit 1.
0x051 Single erase Erase the page indexed by FEEADR.
0x061 Mass erase Erase 30 kB of user space. The 2 kB of kernel are protected. To prevent accidental execution, a command
sequence is required to execute this instruction. See the Command Sequence for Executing a Mass Erase
section.
0x07 Reserved Reserved.
0x08 Reserved Reserved.
0x09 Reserved Reserved.
0x0A Reserved Reserved.
0x0B Signature This command results in a 24-bit LFSR-based signature being generated and loaded into the FEESIG MMR. This
operation takes 16,389 clock cycles.
0x0C Protect This command can run only once. The value of FEEPRO is saved and is removed only with a mass erase (0x06)
or the key.
0x0D Reserved Reserved.
0x0E Reserved Reserved.
0x0F Ping No operation; interrupt generated.
1 The FEECON register always reads 0x07 immediately after execution of any of these commands.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 26 of 108
FEEDAT Register
FEEDAT is a 16-bit data register. This register holds the data
value for flash read and write commands.
Name: FEEDAT
Address: 0xFFFF0E0C
Default value: 0xXXXX
Access: Read and write
FEEADR Register
FEEADR is a 16-bit address register used for accessing
individual pages of the 32 kB flash block. The valid address
range for a user is: 0x0000 to 0x77FF. This represents the 30 kB
flash user memory space. A read or write access outside this
boundary causes a data abort exception to occur.
Name: FEEADR
Address: 0xFFFF0E10
Default value: 0x0000
Access: Read and write
FEESIG Register
The FEESIG register is a 24-bit MMR. This register is updated
with the 24-bit signature value after the signature command is
executed. This value is the result of the linear feedback shift
register (LFSR) operation initiated by the signature command.
Name: FEESIG
Address: 0xFFFF0E18
Default value: 0xFFFFFF
Access: Read
FEEPRO Register
The FEEPRO MMR provides protection following a subsequent
reset of the MMR. It requires a software key (see Table 16).
Name: FEEPRO
Address: 0xFFFF0E1C
Default value: 0x00000000
Access: Read and write
FEEHID Register
The FEEHID MMR provides immediate protection. It does not
require any software key. Note that the protection settings in
FEEHID are cleared by a reset (see Table 16).
Name: FEEHID
Address: 0xFFFF0E20
Default value: 0xFFFFFFFF
Access: Read and write
Table 16. FEEPRO and FEEHID MMR Bit Designations
Bit Description
31 Read protection.
Cleared by user to protect all code. No JTAG read
accesses for protected pages if this bit is cleared.
Set by the user to allow reading the code via JTAG.
30 Protection for Page 59 (0x00087600 to 0x000877FF).
Set by the user to allow writing to Page 59. Cleared to
protect Page 59.
29
Protection for Page 58 (0x00087400 to 0x000875FF).
Set by the user to allow writing to Page 58. Cleared to
protect Page 58.
28:0
Write protection for Page 57 to Page 0. Each bit
represents two pages. Each page is 512 bytes in size.
Bit 0 is protection for Page 0 and Page 1 (0x00080000
to 0x000803FF). Set by the user to allow writing Page 0
and Page 1. Cleared to protect Page 0 and Page 1.
Bit 1 is protection for Page 2 and Page 3 (0x00080400
to 0x000807FF. Set by the user to allow writing Page 2
and Page 3. Cleared to protect Page 2 and Page 3.
Bit 27 is protection for page 54 and page 55 (0x86C00
to 0x86FFF). Set by the user to allow writing to Page
54 and Page 55. Cleared to protect Page 54 and Page
55.
Bit 28 is protection for page 56 and page 57 (0x87000
to 0x873FF). Set by the user to allow writing to Page
56 and Page 57. Cleared to protect Page 56 and Page
57.
Temporary Protection
Temporary protection can be set and removed by writing
directly into the FEEHID MMR. This register is volatile and,
therefore, protection is only in place for as long as the part
remains powered on. The protection setting is not reloaded
after a power cycle.
Keyed Permanent Protection
Keyed permanent protection can be set via FEEPRO to lock the
protection configuration. The software key used at the start of
the required FEEPRO write sequence is saved one time only
and must be used for any subsequent access of the FEEHID or
FEEPRO MMRs. A mass erase sets the software protection key
back to 0xFFFF but also erases the entire user code space.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 27 of 108
Permanent Protection
Permanent protection can be set via FEEPRO, similar to how
keyed permanent protection is set, with the only difference
being that the software key used is 0xDEADDEAD. When the
FEEPRO write sequence is saved, only a mass erase sets the
software protection key back to 0xFFFFFFFF. This also erases
the entire user code space.
Sequence to Write the Software Protection Key and Set
Permanent Protection
1. Write in FEEPRO corresponding to the pages to be
protected.
2. Write the new (user-defined) 32-bit software protection
key in FEEADR (Bits[31:16]) and FEEDAT (Bits[15:0]).
3. Write 10 in FEEMOD (Bits[6:5]) and set FEEMOD (Bit 3).
4. Run the protect command (Code 0x0C) in FEECON.
To remove or modify the protection, the same sequence can be
used with a modified value of FEEPRO.
The previous sequence for writing the key and setting permanent
protection is illustrated in the following example, this protects
writing Page 4 and Page 5 of the Flash/EE:
Int a = FEESTA; // Ensure FEESTA
is cleared
FEEPRO = 0xFF FFFFFB; // Protect Page 4
and Page 5
FEEADR = 0x66 BB; // 32-bit key
value (Bits[31:16])
FEEDAT = 0xAA 55; // 32-bit key
value (Bits[15:0 ])
FEEMOD = 0x00 48 // Lock security
sequence
FEECON = 0x0C ; // Wr ite key
command
while (FEESTA & 0x04 ){} // Wait for
command to finish
Command Sequence for Executing a Mass Erase
FEEDAT = 0x3CFF;
FEEADR = 0xFFC3;
FEEMOD = FEEMOD|0x8; //Erase key enable
FEECON = 0x06; //Mass erase command
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 28 of 108
MEMORY MAPPED REGISTERS
The memory mapped register (MMR) space is mapped into the
upper two pages of the memory array and is accessed by
indirect addressing through the ARM7 banked registers.
The MMR space provides an interface between the CPU and all
on-chip peripherals. All registers, except the core registers, reside
in the MMR area. All shaded locations shown in Figure 12 are
unoccupied or reserved locations and should not be accessed by
user software. Figure 12 shows the full MMR memory map.
The access time for reading from or writing to an MMR
depends on the advanced microcontroller bus architecture
(AMBA) bus used to access the peripheral. The processor has
two AMBA buses: the advanced high performance bus (AHB)
used for system modules and the advanced peripheral bus
(APB) used for a lower performance peripheral. Access to the
AHB is one cycle, and access to the APB is two cycles. All
peripherals on the ADuC7060/ADuC7061 are on the APB
except for the Flash/EE memory, the GPIOs, and the PWM.
PWM
0xFFFF0FC0
0xFFFFFFFF
0xFFFF0F80
FL ASH CONTROL
INTERFACE
0xFFFF0E24
0xFFFF0E00
GPIO
0xFFFF0D50
0xFFFF0D00
SPI
0xFFFF0A14
0xFFFF0A00
I
2
C
0xFFFF0948
0xFFFF0900
UART
0xFFFF0730
0xFFFF0700
DAC
0xFFFF0620
0xFFFF0600
ADC
0xFFFF0570
0xFFFF0500
BAND GAP
REFERENCE
0xFFFF0490
0xFFFF048C
SPI/I
2
C
SELECTION
0xFFFF0470
0xFFFF0450
PLL AND O S CIL L ATO R
CONTROL
0xFFFF0420
0xFFFF0404
GENERAL-PURPOSE
TIMER
0xFFFF0394
0xFFFF0380
WATCHDOG
TIMER
0xFFFF0370
0xFFFF0360
WAKE-UP
TIMER
0xFFFF0350
0xFFFF0340
GENERAL-PURPOSE
TIMER
0xFFFF0334
0xFFFF0320
REMAP AND
SYSTEM CONTROL
0xFFFF0238
0xFFFF0220
INTERRUPT
CONTROLLER
0xFFFF0140
0xFFFF0000
07079-007
Figure 12. Memory Mapped Registers
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 29 of 108
COMPLETE MMR LISTING
In the following MMR tables, addresses are listed in hexadecimal code. Access types include R for read, W for write, and R/W for read
and write.
Table 17. IRQ Address Base = 0xFFFF0000
Address Name Bytes
Access
Type Default Value Description
0x0000 IRQSTA 4 R 0x00000000 Active IRQ source status.
0x0004 IRQSIG 4 R Current state of all IRQ sources (enabled and disabled).
0x0008 IRQEN 4 R/W 0x00000000 Enabled IRQ sources.
0x000C IRQCLR 4 W 0x00000000 MMR to disable IRQ sources.
0x0010 SWICFG 4 W 0x00000000 Software interrupt configuration MMR.
0x0014 IRQBASE 4 R/W 0x00000000 Base address of all vectors. Points to the start of the 64-byte memory block,
which can contain up to 32 pointers to separate subroutine handlers.
0x001C IRQVEC 4 R 0x00000000 This register contains the subroutine address for the currently active
IRQ source.
0x0020 IRQP0 4 R/W 0x00000000 Contains the interrupt priority setting for Interrupt Source 1 to Interrupt
Source 7. An interrupt can have a priority setting of 0 to 7.
0x0024 IRQP1 4 R/W 0x00000000 Contains the interrupt priority setting for Interrupt Source 8 to Interrupt
Source 15.
0x0028 IRQP2 4 R/W 0x00000000 Contains the interrupt priority setting for Interrupt Source 16 to
Interrupt Source 19.
0x0030 IRQCONN 4 R/W 0x00000000 Used to enable IRQ and FIQ interrupt nesting.
0x0034 IRQCONE 4 R/W 0x00000000 Configures the external interrupt sources as rising edge, falling edge, or
level triggered.
0x0038 IRQCLRE 4 R/W 0x00000000 Used to clear an edge-level-triggered interrupt source.
0x003C
IRQSTAN
4
R/W
0x00000000
This register indicates the priority level of an interrupt that has just
caused an interrupt exception.
0x0100 FIQSTA 4 R 0x00000000 Active FIQ source status.
0x0104 FIQSIG 4 R Current state of all FIQ sources (enabled and disabled).
0x0108 FIQEN 4 R/W 0x00000000 Enabled FIQ sources.
0x010C FIQCLR 4 W 0x00000000 MMR to disable FIQ sources.
0x011C FIQVEC 4 R 0x00000000
This register contains the subroutine address for the currently active FIQ
source.
0x013C FIQSTAN 4 R/W 0x00000000 Indicates the priority level of an FIQ that has just caused an FIQ
exception.
Table 18. System Control Address Base = 0xFFFF0200
Address Name Bytes
Access
Type Default Value Description
0x0220 REMAP1 1 R/W 0x00 Remap control register. See the Remap Operation section.
0x0230 RSTSTA 1 R/W 0x01 RSTSTA status MMR. See the Reset section.
0x0234 RSTCLR 1 W 0x00 Register for clearing the RSTSTA register.
1
Updated by the kernel.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 30 of 108
Table 19. Timer Address Base = 0xFFFF0300
Address Name Bytes
Access
Type Default Value Description
0x0320 T0LD 4 R/W 0x00000000 Timer0 load register.
0x0324 T0VAL 4 R 0xFFFFFFFF Timer0 value register.
0x0328 T0CON 4 R/W 0x01000000 Timer0 control MMR.
0x032C T0CLRI 1 W N/A Timer0 interrupt clear register.
0x0330 T0CAP 4 R 0x00000000 Timer0 capture register.
0x0340 T1LD 4 R/W 0x00000000 Timer1 load register.
0x0344 T1VAL 4 R 0xFFFFFFFF Timer1 value register.
0x0348 T1CON 2 R/W 0x0000 Timer1 control MMR.
0x034C T1CLRI 1 W N/A Timer1 interrupt clear register.
0x0360 T2LD 2 R/W 0x3BF8 Timer2 load register.
0x0364 T2VAL 2 R 0x3BF8 Timer2 value register.
0x0368 T2CON 2 R/W 0x0000 Timer2 control MMR.
0x036C
T2CLRI
1
W
N/A
Timer2 interrupt clear register.
0x0380 T3LD 2 R/W 0x0000 Timer3 load register.
0x0384 T3VAL 2 R 0xFFFF Timer3 value register.
0x0388 T3CON 4 R/W 0x00000000 Timer3 control MMR.
0x038C T3CLRI 1 W N/A Timer3 interrupt clear register.
0x0390 T3CAP 2 R 0x0000 Timer3 capture register.
Table 20. PLL Base Address = 0xFFFF0400
Address Name Bytes
Access
Type Default Value Description
0x0404 POWKEY1 2 W 0xXXXX POWCON0 prewrite key.
0x0408 POWCON0 1 R/W 0x7B Power control and core speed control register.
0x040C POWKEY2 2 W 0xXXXX POWCON0 postwrite key.
0x0410 PLLKEY1 2 W 0xXXXX PLLCON prewrite key.
0x0414 PLLCON 1 R/W 0x00 PLL clock source selection MMR.
0x0418 PLLKEY2 2 W 0xXXXX PLLCON postwrite key.
0x0434 POWKEY3 2 W 0xXXXX POWCON1 prewrite key.
0x0438 POWCON1 2 R/W 0x124 Power control register.
0x043C POWKEY4 2 W 0xXXXX POWCON1 postwrite key.
0x0464 GP0KEY1 2 W 0xXXXX GP0CON1 prewrite key.
0x0468
GP0CON1
1
R/W
0x00
Configures P0.0, P0.1, P0.2, and P0.3 as analog inputs or digital I/Os. Also
enables SPI or I2C mode.
0x046C GP0KEY2 2 W 0xXXXX GP0CON1 postwrite key.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 31 of 108
Table 21. ADC Address Base = 0xFFFF0500
Address Name Bytes
Access
Type Default Value Description
0x0500 ADCSTA 2 R 0x0000 ADC status MMR.
0x0504 ADCMSKI 2 R/W 0x0000 ADC interrupt source enable MMR.
0x0508 ADCMDE 1 R/W 0x03 ADC mode register.
0x050C ADC0CON 2 R/W 0x8000 Primary ADC control MMR.
0x0510 ADC1CON 2 R/W 0x0000 Auxiliary ADC control MMR.
0x0514 ADCFLT 2 R/W 0x0007 ADC filter control MMR.
0x0518 ADCCFG 1 R/W 0x00 ADC configuration MMR.
0x051C ADC0DAT 4 R 0x00000000 Primary ADC result MMR.
0x0520 ADC1DAT 4 R 0x00000000 Auxiliary ADC result MMR
0x0524 ADC0OF1 2 R/W 0x0000, part specific, factory
programmed
Primary ADC offset calibration setting.
0x0528 ADC1OF1 2 R/W 0x0000, part specific, factory
programmed
Auxiliary ADC offset MMR.
0x052C
ADC0GN
1
2
R/W
0x5555
Primary ADC offset MMR.
0x0530 ADC1GN1 2 R/W 0x5555 Auxiliary ADC offset MMR. See the ADC operation mode
configuration bit (ADCLPMCFG[1:0]) in Table 42.
0x0534 ADC0RCR 2 R/W 0x0001 Primary ADC result counter/reload MMR.
0x0538 ADC0RCV 2 R 0x0000 Primary ADC result counter MMR.
0x053C ADC0TH 2 R/W 0x0000 Primary ADC 16-bit comparator threshold MMR.
0x0540 ADC0THC 2 R/W 0x0001 Primary ADC 16-bit comparator threshold counter limit.
0x0544 ADC0THV 2 R 0x0000 ADC0 8-bit threshold exceeded counter register
0x0548 ADC0ACC 4 R 0x00000000 Primary ADC accumulator.
0x054C ADC0ATH 4 R/W 0x00000000 Primary ADC 32-bit comparator threshold MMR.
0x0570 IEXCON 1 R/W 0x00 Excitation current sources control register.
1 Updated by the kernel to part specific calibration value.
Table 22. DAC Control Address Base = 0xFFFF0600
Address Name Bytes
Access
Type Default Value Description
0x0600 DAC0CON 2 R/W 0x0200 DAC control register.
0x0604 DAC0DAT 4 R/W 0x00000000 DAC output data register.
Table 23. UART Base Address = 0xFFFF0700
Address Name Bytes
Access
Type Default Value Description
0x0700 COMTX 1 W N/A UART transmit register.
0x0700 COMRX 1 R 0x00 UART receive register.
0x0700 COMDIV0 1 R/W 0x00 UART Standard Baud Rate Generator Divisor Value 0.
0x0704 COMIEN0 1 R/W 0x00 UART Interrupt Enable MMR 0.
0x0704 COMDIV1 1 R/W 0x00 UART Standard Baud Rate Generator Divisor Value 1.
0x0708 COMIID0 1 R 0x01 UART Interrupt Identification 0.
0x070C COMCON0 1 R/W 0x00 UART Control Register 0.
0x0710 COMCON1 1 R/W 0x00 UART Control Register 1.
0x0714 COMSTA0 1 R 0x60 UART Status Register 0.
0x0718
COMSTA1
1
R
0x00
UART Status Register 1.
0X072C COMDIV2 2 R/W 0x0000 UART fractional divider MMR.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 32 of 108
Table 24. I2C Base Address = 0xFFFF0900
Address Name Bytes Access Type Default Value Description
0x0900 I2CMCON 2 R/W 0x0000 I2C master control register.
0x0904 I2CMSTA 2 R 0x0000 I2C master status register.
0x0908 I2CMRX 1 R 0x00 I2C master receive register.
0x090C I2CMTX 1 W 0x00 I2C master transmit register.
0x0910 I2CMCNT0 2 R/W 0x0000 I2C master read count register. Write the number of required bytes into
this register prior to reading from a slave device.
0x0914 I2CMCNT1 1 R 0x00 I2C master current read count register. This register contains the
number of bytes already received during a read from slave sequence.
0x0918 I2CADR0 1 R/W 0x00 Address byte register. Write the required slave address here prior to
communications.
0x091C I2CADR1 1 R/W 0x00 Address byte register. Write the required slave address here prior to
communications. Only used in 10-bit mode.
0x0924 I2CDIV 2 R/W 0x1F1F I2C clock control register. Used to configure the SCLK frequency.
0x0928 I2CSCON 2 R/W 0x0000 I2C slave control register.
0x092C I2CSSTA 2 R/W 0x0000 I2C slave status register.
0x0930 I2CSRX 1 R 0x00 I2C slave receive register.
0x0934 I2CSTX 1 W 0x00 I2C slave transmit register.
0x0938 I2CALT 1 R/W 0x00 I2C hardware general call recognition register.
0x093C I2CID0 1 R/W 0x00 I2C Slave ID0 register. Slave bus ID register.
0x0940 I2CID1 1 R/W 0x00 I2C Slave ID1 register. Slave bus ID register.
0x0944 I2CID2 1 R/W 0x00 I2C Slave ID2 register. Slave bus ID register.
0x0948 I2CID3 1 R/W 0x00 I2C Slave ID3 register. Slave bus ID register.
0x094C I2CFSTA 2 R/W 0x0000 I2C FIFO status register. Used in both master and slave modes.
Table 25. SPI Base Address = 0xFFFF0A00
Address Name Bytes
Access
Type Default Value Description
0x0A00 SPISTA 4 R 0x00000000 SPI status MMR.
0x0A04 SPIRX 1 R 0x00 SPI receive MMR.
0x0A08 SPITX 1 W 0x00 SPI transmit MMR.
0x0A0C SPIDIV 1 W 0x1B SPI baud rate select MMR.
0x0A10 SPICON 2 R/W 0x0000 SPI control MMR.
Table 26. GPIO Base Address = 0xFFFF0D00
Address Name Bytes
Access
Type Default Value Description
0x0D00 GP0CON0 4 R/W 0x00000000 GPIO Port 0 control MMR.
0x0D04 GP1CON 4 R/W 0x00000000 GPIO Port 1 control MMR.
0x0D08 GP2CON 4 R/W 0x00000000 GPIO Port 2 control MMR.
0x0D20 GP0DAT 4 R/W 0x000000XX GPIO Port 0 data control MMR.
0x0D24 GP0SET 4 W 0x000000XX GPIO Port 0 data set MMR.
0x0D28 GP0CLR 4 W 0x000000XX GPIO Port 0 data clear MMR.
0x0D2C
GP0PAR
4
R/W
0x00000000
GPIO Port 0 pull-up disable MMR.
0x0D30 GP1DAT 4 R/W 0x000000XX GPIO Port 1 data control MMR.
0x0D34 GP1SET 4 W 0x000000XX GPIO Port 1 data set MMR.
0x0D38 GP1CLR 4 W 0x000000XX GPIO Port 1 data clear MMR.
0x0D3C GP1PAR 4 R/W 0x00000000 GPIO Port 1 pull-up disable MMR.
0x0D40 GP2DAT 4 R/W 0x000000XX GPIO Port 2 data control MMR.
0x0D44 GP2SET 4 W 0x000000XX GPIO Port 2 data set MMR.
0x0D48 GP2CLR 4 W 0x000000XX GPIO Port 2 data clear MMR.
0x0D4C GP2PAR 4 R/W 0x00000000 GPIO Port 2 pull-up disable MMR.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 33 of 108
Table 27. Flash/EE Base Address = 0xFFFF0E00
Address Name Bytes
Access
Type Default Value Description
0x0E00 FEESTA 2 R 0x20 Flash/EE status MMR.
0x0E04 FEEMOD 2 R/W 0x0000 Flash/EE control MMR.
0x0E08 FEECON 1 R/W 0x07 Flash/EE control MMR.
0x0E0C FEEDAT 2 R/W 0xXXXX Flash/EE data MMR.
0x0E10 FEEADR 2 R/W 0x0000 Flash/EE address MMR.
0x0E18 FEESIG 3 R 0xFFFFFF Flash/EE LFSR MMR.
0x0E1C FEEPRO 4 R/W 0x00000000 Flash/EE protection MMR.
0x0E20 FEEHID 4 R/W 0xFFFFFFFF Flash/EE protection MMR.
Table 28. PWM Base Address = 0xFFFF0F80
Address Name Bytes
Access
Type Default Value Description
0x0F80 PWMCON 2 R/W 0x0012 PWM control register. See the Pulse-Width Modulator section for full
details.
0x0F84 PWM0COM0 2 R/W 0x0000 Compare Register 0 for PWM Output 0 and PWM Output 1.
0x0F88 PWM0COM1 2 R/W 0x0000 Compare Register 1 for PWM Output 0 and PWM Output 1.
0x0F8C PWM0COM2 2 R/W 0x0000 Compare Register 2 for PWM Output 0 and PWM Output 1.
0x0F90 PWM0LEN 2 R/W 0x0000 Frequency control for PWM Output 0 and PWM Output 1.
0x0F94 PWM1COM0 2 R/W 0x0000 Compare Register 0 for PWM Output 2 and PWM Output 3.
0x0F98 PWM1COM1 2 R/W 0x0000 Compare Register 1 for PWM Output 2 and PWM Output 3.
0x0F9C PWM1COM2 2 R/W 0x0000 Compare Register 2 for PWM Output 2 and PWM Output 3.
0x0FA0
PWM1LEN
2
R/W
0x0000
Frequency control for PWM Output 2 and PWM Output 3.
0x0FA4 PWM2COM0 2 R/W 0x0000 Compare Register 0 for PWM Output 4 and PWM Output 5.
0x0FA8 PWM2COM1 2 R/W 0x0000 Compare Register 1 for PWM Output 4 and PWM Output 5.
0x0FAC PWM2COM2 2 R/W 0x0000 Compare Register 2 for PWM Output 4 and PWM Output 5.
0x0FB0 PWM2LEN 2 R/W 0x0000 Frequency control for PWM Output 4 and PWM Output 5.
0x0FB8 PWMCLRI 2 W 0x0000 PWM interrupt clear register. Writing any value to this register clears a
PWM interrupt source.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 34 of 108
RESET
There are four kinds of resets: external reset, power-on reset,
watchdog reset, and software reset. The RSTSTA register
indicates the source of the last reset and can be written by user
code to initiate a software reset event.
The bits in this register can be cleared to 0 by writing to the
RSTCLR MMR at 0xFFFF0234. The bit designations in
RSTCLR mirror those of RSTSTA. These registers can be used
during a reset exception service routine to identify the source of
the reset. The implications of all four kinds of reset events are
tabulated in Table 30.
RSTSTA Register
Name: RSTSTA
Address: 0xFFFF0230
Default value: Depends on type of reset
Access: Read and write
Function: This 8-bit register indicates the source of the
last reset event and can be written by user code
to initiate a software reset.
RSTCLR Register
Name: RSTCLR
Address: 0xFFFF0234
Access: Write only
Function: This 8-bit write only register clears the corres-
ponding bit in RSTSTA.
Table 29. RSTSTA/RSTCLR MMR Bit Designations
Bit Description
7:4 Not used. These bits are not used and always
read as 0.
3 External reset.
Automatically set to 1 when an external reset
occurs.
This bit is cleared by setting the corresponding bit
in RSTCLR.
2 Software reset.
This bit is set to 1 by user code to generate a soft-
ware reset.
This bit is cleared by setting the corresponding bit
in RSTCLR.1
1 Watchdog timeout.
Automatically set to 1 when a watchdog timeout
occurs.
Cleared by setting the corresponding bit in RSTCLR.
0 Power-on reset.
Automatically set when a power-on reset occurs.
Cleared by setting the corresponding bit in RSTCLR.
1 If the software reset bit in RSTSTA is set, any write to RSTCLR that does not
clear this bit generates a software reset.
Table 30. Device Reset Implications
RESET
Reset
External Pins to
Default State
Kernel
Executed
Reset All
External MMRs
(Excluding RSTSTA)
Peripherals
Reset
Watchdog
Timer Reset
RAM
Valid
RSTSTA
(Status After
Reset Event)
POR Yes Yes Yes Yes Yes Yes/No RSTSTA[0] = 1
Watchdog Yes Yes Yes Yes No Yes RSTSTA[1] = 1
Software Yes Yes Yes Yes No Yes RSTSTA[2] = 1
External Pin Yes Yes Yes Yes No Yes RSTSTA[3] = 1
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 35 of 108
OSCILLATOR, PLL, AND POWER CONTROL
CLOCKING SYSTEM
The ADuC7060/ADuC7061 integrates a 32.768 kHz ±3% oscillator, a
clock divider, and a PLL. The PLL locks onto a multiple of the inter-
nal oscillator or an external 32.768 kHz crystal to provide a stable
10.24 MHz clock (UCLK) for the system. To allow power saving,
the core can operate at this frequency or at binary submultiples
of it. The actual core operating frequency, UCLK/2CD, is refered
to as HCLK. The default core clock is the PLL clock divided by 8
(CD = 3) or 1.28 MHz.
PLL
CORE
CD
10.24MHz
32.768kHz
*32.768kHz
±
3%
HCLK
UCLK
OCLK
WATCHDOG
TIMER
WAKE-UP
TIMER
INT. 3 2kHz
OSCILLATOR* CRYSTAL
OSCILLATOR XCLKO
XCLKI
ANALOG
PERIPHERALS
/2
CD
I
2
C
07079-008
P2.0/EXTCLK
Figure 13. Clocking System
External Crystal Selection
To switch to an external crystal, users must follow this procedure:
1. Enable the Timer1 interrupt and configure it for a timeout
period of >120 μs.
2. Follow the write sequence to the PLLCON register, setting the
OSEL bits to [10] and clearing the EXTCLK bit.
3. Force the part into nap mode by following the correct write
sequence to the POWCON register.
4. When the part is interrupted from nap mode by the Timer1
interrupt source, the clock source has switched to the external
crystal.
Example source code
T1LD = 0x80; // 32,768 clock ticks
T1CON = 0xC0; // Periodic mode, enable
// timer, 32,768 Hz clock/1
IRQEN |= 0x10; // Enable Timer1 interrupt
// source
PLLKEY1 = 0xAA; // Switch to external crystal
PLLCON = 0x2;
PLLKEY2 = 0x55;
POWKEY1 = 0x1; // Enter nap mode
POWCON0 = 0x73;
POWKEY2 = 0xF4;
In case of crystal loss, the watchdog timer should be used. During
initialization, a test on the RSTSTA can determine if the reset came
from the watchdog timer.
External Clock Selection
To switch to an external clock on P2.0, configure P2.0 in Mode 0.
The external clock can be up to 20.48 MHz, provided that the toler-
ance is 1%. The external clock is divided by 2 internally on the part.
Example source code
T1LD = 0x80;
T1CON = 0xC0;
IRQEN |= 0x10; // Enable Timer1 interrupt
PLLKEY1 = 0xAA; // Switch to external clock
PLLCON = 0x4;
PLLKEY2 = 0x55;
POWKEY1 = 0x1; // Enter NAP mode
POWCON0 = 0x73;
POWKEY2 = 0xF4;
The selection of the clock source is in the PLLCON register. By
default, the part uses the internal oscillator feeding the PLL.
POWER CONTROL SYSTEM
The core clock frequency is changed by writing to the POWCON0
register. This is a key protected register; therefore, Register POWKEY1
and Register POWKEY2 must be written to immediately before and
after configuring the POWCON0 register. The following is a simple
example showing how to configure the core clock for 10.24 MHz:
POWKEY1 = 0x1;
POWCON0 = 0x78; //Set core to max CPU
//speed of 10.24 MHz
POWKEY2 = 0xF4;
A choice of operating modes is available on the ADuC7060/
ADuC7061. Table 33 describes what part is powered on in the
different modes and indicates the power-up time.
Table 34 gives some typical values for the total current consumption
(analog + digital supply currents) in the different modes, depending
on the clock divider bits. The ADC is turned off. Note that these
values also include the current consumption of the regulator and
other parts on the test board where these values are measured.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 36 of 108
By writing to POWCON1, it is possible to further reduce power
consumption in active mode by powering down the UART, PWM
or I2C/SPI blocks. To access POWCON1, POWKEY3 must be set to
0x76 in the instruction immediately before accessing POWCON1
and POWKEY4 must be set to 0xB1 in the instruction immediately
after.
For example, the following code enables the SPI/I2C blocks but,
powers down the PWM and UART blocks.
POWKEY3 =0x76;
POWCON1 =0x4; //0x100 PWM; 0x20
Uart; 0x4 SPI/I2C
POWKEY4 =0xB1;
Power and Clock Control Registers
POWKEY1 Register
Name: POWKEY1
Address: 0xFFFF0404
Default value: 0xXXXX
Access: Write
Function: When writing to POWCON0, the value of 0x01
must be written to this register in the instruction
immediately before writing to POWCON0.
POWCON0 Register
Name: POWCON0
Address: 0xFFFF0408
Default value: 0x7B
Access: Read and write
Function: This register controls the clock divide bits
controlling the CPU clock (HCLK).
Table 31. POWCON0 MMR Bit Designations
Bit Name Description
7 Reserved This bit must always be set to 0.
6 XPD XTAL power-down.
Cleared by user to power down the external crystal circuitry.
Set by user to enable the external crystal circuitry.
5 PLLPD PLL power-down. Timer peripherals power down if driven from the PLL output clock. Timers driven from an active clock
source remain in normal power mode.
This bit is cleared to 0 to power down the PLL. The PLL cannot be powered down if either the core or peripherals are
enabled; Bit 3, Bit 4, and Bit 5 must be cleared simultaneously.
Set by default, and set by hardware on a wake-up event.
4 PPD Peripherals power-down. The peripherals that are powered down by this bit are as follows:
SRAM, Flash/EE memory and GPIO interfaces, and SPI/I2C and UART serial ports.
Cleared to power down the peripherals. The peripherals cannot be powered down if the core is enabled; Bit 3 and Bit 4
must be cleared simultaneously.
Set by default and/or by hardware on a wake-up event. Wake-up timer (Timer1) can remain active.
3 COREPD Core power-down. If user code powers down the MCU, include a dummy MCU cycle after the power-down command is
written to POWCON0.
Cleared to power down the ARM core.
Set by default and set by hardware on a wake-up event.
2:0
CD[2:0]
Core clock depends on CD setting:
[000] = 10.24 MHz
[001] = 5.12 MHz
[010] = 2.56 MHz
[011] = 1.28 MHz [default value]
[100] = 640 kHz
[101] = 320 kHz
[110] = 160 kHz
[111] = 80 kHz
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 37 of 108
POWKEY2 Register
Name: POWKEY2
Address: 0xFFFF040C
Default value: 0xXXXX
Access: Write
Function: When writing to POWCON0,
the value of 0xF4 must be
written to this register in the
instruction immediately
before writing to POWCON0.
POWKEY3 Register
Name: POWKEY3
Address: 0xFFFF0434
Default value: 0xXXXX
Access: Write
Function: When writing to POWCON1, the value of
0x76 must be written to this register in the
instruction immediately before writing to
POWCON1.
POWCON1 Register
Name: POWCON1
Address: 0xFFFF0438
Default value: 0x124
Access: Read and write
Function: This register controls the clock signal to the
PWM, UART and I2C/SPI blocks.
By disabling the clock to these blocks, power
consumption is reduced.
POWKEY4 Register
Name: POWKEY4
Address: 0xFFFF043C
Default value: 0xXXXX
Access: Write
Function: When writing to POWCON1, the value of
0xB1 must be written to this register in the
instruction immediately after writing to
POWCON1.
Table 32. POWCON1 MMR Bit Designations
Bit Name Description
15:9 Reserved This bit must always be set to 0.
8 PWMOFF PWM power-down bit.
Set by user to 1 to enable the PWM block. This bit is set by default.
Cleared by user to 0 to power down the PWM block.
7:6 Reserved Reserved bits. Always clear these bits to 0.
5 UARTOFF UART power-down bit.
Set by user to 1 to enable the UART block. This bit is set by default.
Cleared by user to 0 to power down the UART block.
4:3 Reserved Reserved bits. Always clear these bits to 0.
2 I2CSPIOFF I2C/SPI power-down bit.
Set by user to 1 to enable the I2C/SPI blocks. This bit is set by default.
Cleared by user to 0 to power down the I2C/SPI blocks.
1:0 Reserved Reserved Bits. Always clear these bits to 0.
Table 33. ADuC7060/ADuC7061 Power Saving Modes
POWCON0[6:3] Mode Core Peripherals PLL XTAL/T1/T2 IRQ0 to IRQ3 Start-Up/Power-On Time
1111 Active Yes Yes Yes Yes Yes 130 ms at CD = 0
1110 Pause Yes Yes Yes Yes 4.8 μs at CD = 0; 660 μs at CD = 7
1100 Nap Yes Yes Yes 4.8 μs at CD = 0; 660 μs at CD = 7
1000 Sleep Yes Yes 66 μs at CD = 0; 900 μs at CD = 7
0000 Stop Yes 66 μs at CD = 0; 900 μs at CD = 7
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 38 of 108
Table 34. Typical Current Consumption at 25°C in mA1
POWCON0[6:3] Mode CD = 0 CD = 1 CD = 2 CD = 3 CD = 4 CD = 5 CD = 6 CD = 7
1111 Active2 5.22 4.04 2.69 2.01 1.67 1.51 1.42 1.38
1110 Pause3 2.6 1.95 1.6 1.49 1.4 1.33 1.31 1.3
1100 Nap3 1.33 1.29 1.29 1.29 1.29 1.29 1.29 1.29
1000 Sleep3 0.085 0.085 0.085 0.085 0.085 0.085 0.085 0.085
0000 Stop3 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055
1 All values listed in Table 34 have been taken with both ADCs turned off.
2 In active mode, GP0PAR bit 7 =1.
3 The values for pause, nap, sleep, and stop modes are measured with the NTRST pin low. To minimize IDD due to nTRST in all modes, set GP0PAR Bit 7 =1. This disables
the internal pull-down on the nTRST pin and means there is no ground path for the external pull-up resistor through the nTRST pin. By default, GP0PAR Bit 7 = 0,
therefore, setting this bit in user code will not affect the BMoperation.
Name: PLLKEY1
Address: 0xFFFF0410
Default value: 0xXXXX
Access: Write
Function: When writing to the PLLCON register, the
value of 0xAA must be written to this register
in the instruction immediately before writing
to PLLCON.
Name: PLLCON
Address: 0xFFFF0414
Default value: 0x00
Access: Read and write
Function: This register selects the clock input to the PLL.
Table 35. PLLCON MMR Bit Designations
Bit
Name
Description
7:3 Reserved These bits must always be set to 0.
2 EXTCLK Set this bit to 1 to select external clock input
from P2.0.
Clear this bit to disable the external clock.
1:0 OSEL Oscillator selection bits.
[00] = internal 32,768 Hz oscillator.
[01] = internal 32,768 Hz oscillator.
[10] = external crystal.
[11] = internal 32,768 Hz oscillator.
Name: PLLKEY2
Address: 0xFFFF0418
Default value: 0xXXXX
Access: Write
Function: When writing to PLLCON, the value of 0x55
must be written to this register in the
instruction immediately after writing to
PLLCON.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 39 of 108
ADC CIRCUIT INFORMATION
IEXC0
IEXC1
ADC2
ADC3
ADC4
ADC5
ADC6
ADC7
ADC8
ADC9
GND_SW 50
BUF Σ-
MODULATOR PROGRAMMABLE
FILTER
Σ-
MODULATOR PROGRAMMABLE
FILTER
OVERRANGE
INTERFACE
AND CONTROL
CHOP
MUX
CHOP
MUX
AGND TEMPERATURE
SENSOR
INTEGRATOR
ACCUMULATOR
CONVERSION
COUNTER
COMPARATORS
TO ARM
0.2Hz TO 8kHz
0.5Hz TO 8kHz
DAC
BUF
INTERNAL
REFERENCE
AVDD
AUX_REFP
AUX_REFM
0.2mA TO 1mA
PGA
50µA O/C
DETECT
V
REF
V
REF+AVDD
ADC0
ADC1
DAC0
07079-009
Figure 14. Analog Block Diagram
The ADuC7060/ADuC7061 incorporates two independent
multichannel Σ-Δ ADCs. The primary ADC is a 24-bit,
4-channel ADC. The auxiliary ADC is a 24-bit Σ-Δ ADC,
with up to seven single-ended input channels.
The primary ADC input has a mux and a programmable gain
amplifier on its input stage. The mux on the primary channel
can be configured as two fully differential input channels or as
four single-ended input channels.
The auxiliary ADC incorporates a buffer on its input stage.
Digital filtering is present on both ADCs, which allows
measurement of a wide dynamic range and low frequency
signals such as those in pressure sensor, temperature sensor,
weigh scale, or strain gage type applications.
The ADuC7060/ADuC7061 auxiliary ADC can be configured
as four fully differential input channels or as seven single-ended
input channels.
Because of internal buffering, the internal channels can convert
signals directly from sensors without the need for external
signal conditioning.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 40 of 108
Table 36. Primary ADCTypical Output RMS Noise in Normal Mode (μV)1
ADC
Register
Status
Data
Update
Rate
Selectable Input Range
(PGA Settings)
±1.2 V
(PGA = 1)
±600 mV
(PGA = 2)
±300 mV
(PGA = 4)
±150 mV
(PGA = 8)
±75 mV
(PGA = 16)
±37.5 mV
(PGA = 32)
±18.75 mV
(PGA = 64)
±9.375 mV
(PGA = 128)
±4.68 mV
(PGA = 256)
±2.34 mV
(PGA = 512)
Chop On 4 Hz 0.62 μV 0.648 μV 0.175 μV 0.109 μV 0.077 μV 0.041 μV 0.032 μV 0.0338 μV 0.032 μV 0.033 μV
Chop Off 50 Hz 1.97 μV 1.89 μV 0.570 μV 0.38 μV 0.27 μV 0.147 μV 0.123 μV 0.12 μV 0.098 μV 0.098 μV
Chop Off 1 kHz 8.54 μV 8.4 μV 2.55 μV 1.6 μV 1.17 μV 0.658 μV 0.53 μV 0.55 μV 0.56 μV 0.52 μV
Chop Off 8 kHz 54.97 μV 55.54 μV 14.30 μV 7.88 μV 4.59 μV 2.5 μV 1.71 μV 1.75 μV 0.915 μV 0.909 μV
1 The input voltage range is centered around the common-mode voltage and should meet the input voltage range specified in the Electrical Specifications section.
Table 37. Primary ADCTypical Output RMS Effective Number of Bits in Normal Mode (Peak-to-Peak Bits in Parentheses)
ADC
Register
Status
Data
Update
Rate
Input Voltage Noise (mV)
±1.2 V
(PGA = 1)
±600 mV
(PGA = 2)
±300 mV
(PGA = 4)
±150 mV
(PGA = 8)
±75 mV
(PGA = 16)
±37.5 mV
(PGA = 32)
±18.75 mV
(PGA = 64)
±9.375 mV
(PGA = 128)
±4.68 mV
(PGA = 256)
±2.34 mV
(PGA = 512)
Chop On 4 Hz 21.9
(19.1 p-p)
20.8
(18.1 p-p)
21.7
(19.0 p-p)
21.4
(18.7 p-p)
20.9
(18.2 p-p)
20.8
(18.1 p-p)
20.2
(17.4 p-p)
19.1
(16.4 p-p)
18.2
(15.4 p-p)
17.1
(14.4 p-p)
Chop Off 50 Hz
20.2
(17.5 p-p)
19.3
(16.6 p-p)
20.0
(17.3 p-p)
19.6
(16.9 p-p)
19.1
(16.4 p-p)
19.0
(16.2 p-p)
18.2
(15.5 p-p)
17.3
(14.6 p-p)
16.6
(13.8 p-p)
15.5
(12.8 p-p)
Chop Off 1 kHz 18.1
(15.3 p-p)
17.1
(14.4 p-p)
17.8
(15.1 p-p)
17.5
(14.8 p-p)
17.0
(14.2 p-p)
16.8
(14.1 p-p)
16.1
(13.4 p-p)
15.1
(12.3 p-p)
14.0
(11.3 p-p)
13.1
(10.4 p-p)
Chop Off 8 kHz 15.4
(12.7 p-p)
14.4
(11.7 p-p)
15.4
(12.6 p-p)
15.2
(12.5 p-p)
15.0
(12.3 p-p)
14.9
(12.2 p-p)
14.4
(11.7 p-p)
13.4
(10.7 p-p)
13.3
(10.6 p-p)
12.3
(9.6 p-p)
Table 38. Auxilary ADC—Typical Output RMS Noise
ADC Register
Data
Update Rate RMS Value
Chop On
4 Hz
0.633
μ
V
Chop On 10 Hz 0.810 μV
Chop Off 1 kHz 7.4 μV
Chop Off 8 kHz 54.18 μV
REFERENCE SOURCES
Both the primary and auxiliary ADCs have the option of using
the internal reference voltage or one of two external differential
reference sources. The first external reference is applied to the
VREF+/VREF− pins. The second external reference is applied
to the ADC4/EXT_REF2IN+ and ADC5/EXT_REF2INpins.
By default, each ADC uses the internal 1.2 V reference source.
For details on how to configure the external reference source for
the primary ADC, see the description of the ADC0REF[1:0]
bits in the ADC0 control register, ADC0CON.
For details on how to configure the external reference source for
the auxiliary ADC, see the description of the ADC1REF[2:0]
bits in the ADC1 control register, ADC1CON.
If an external reference source of greater than 1.35 V is needed
for ADC0, the HIGHEXTREF0 bit must be set in ADC0CON.
Similarly, if an external reference source of greater than 1.35 V
is used for ADC1, the HIGHEXTREF1 bit must be set in
ADC1CON.
DIAGNOSTIC CURRENT SOURCES
To detect a connection failure to an external sensor, the
ADuC7060/ADuC7061 incorporates a 50 μA constant current
source on the selected analog input channels to both the
primary and auxiliary ADCs.
The diagnostic current sources for the primary ADC analog
inputs are controlled by the ADC0DIAG[1:0] bits in the
ADC0CON register.
Similarly, the diagnostic current sources for the auxiliary ADC
analog inputs are controlled by the ADC1DIAG[1:0] bits in the
ADC1CON register.
ADC1 (–)
ADC0 (+)
AVDD R1
A B
R2
A B
VIN =
ADC0,
ADC1
07079-010
Figure 15. Example Circuit Using Diagnostic Current Sources
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 41 of 108
Table 39. Example Scenarios for Using Diagnostic Current Sources
Diagnostic Test
Normal Result Fault Result
Detected
Measurement
for Fault
Register Setting Description
ADC0DIAG[1:0] = 0 Convert ADC0/ADC1 as normal with
diagnostic currents disabled.
Expected differential result
across ADC0/ADC1.
Short circuit. Primary ADC reading 0
V regardless of PGA
setting.
ADC0DIAG[1:0] = 1 Enable a 50 μA diagnostic current
source on ADC0 by setting
ADC0DIAG[1:0] = 1. Convert ADC0 and
ADC1.
Main ADC changes by
ΔV = +50 μA × R1. For
example, ~100 mV for R1 =
2 kΩ.
Short circuit
between ADC0
and ADC1.
Short circuit
between R1_a
and R1_b.
Primary ADC reading ≈ 0
V regardless of PGA
setting.
Convert ADC0 in single-ended mode
with diagnostic currents disabled.
Expected voltage on ADC0. ADC0 open
circuit or R1
open circuit.
Primary ADC reading =
+full scale, even on the
lowest PGA setting.
ADC0DIAG[1:0] = 3 Enable a 50 μA diagnostic current
source on both ADC0 and ADC1 by
setting ADC0DIAG[1:0] = 3. Convert
ADC0 and ADC1.
Primary ADC changes by ΔV
= 50 μA × (R1R2), that is,
~10 mV for 10% tolerance.
R1 does not
match R2.
Primary ADC reading >
10 mV.
SINC3 FILTER
The number entered into Bits[6:0] of the ADCFLT register sets
the decimation factor of the sinc3 filter. See Table 46 and Table 47
for further details on the decimation factor values.
The range of operation of the sinc3 filter (SF) word depends on
whether the chop function is enabled. With chopping disabled,
the minimum SF word allowed is 0 and the maximum is 127,
giving an ADC throughput range of 50 Hz to 8 kHz.
For details on how to calculate the ADC sampling frequency
based on the value programmed to the SF[6:0] bits in the
ADCFLT register, refer to Table 46. When changing conversions
speeds, put ADC into idle mode before restarting.
ADC CHOPPING
The ADCs on the ADuC7060/ADuC7061 implements a
chopping scheme whereby the ADC repeatedly reverses its
inputs. Therefore, the decimated digital output values from the
sinc3 filter have a positive and negative offset term associated
with them. This results in the ADC including a final summing
stage that sums and averages each value from the filter with
previous filter output values. This new value is then sent to the
ADC data MMR. This chopping scheme results in excellent dc
offset and offset drift specifications and is extremely beneficial
in applications where drift and noise rejection are required.
PROGRAMMABLE GAIN AMPLIFIER
The primary ADC incorporates an on-chip programmable gain
amplifier (PGA). The PGA can be programmed through 10
different settings giving a range of 1 to 512. The gain is
controlled by the ADC0PGA[3:0] bits in the ADC0CON MMR.
EXCITATION SOURCES
The ADuC7060/ADuC7061 contains two matched software
configurable current sources. These excitation currents are
sourced from AVDD. They are individually configurable to give
a current range of 200 μA to 1 mA. The current step sizes are
200 μA. These current sources can be used to excite an external
resistive bridge or RTD sensors. The IEXCON MMR controls
the excitation current sources. Bit 6 of IEXCON must be set to
enable Excitation Current Source 0. Similarly, Bit 7 must be set
to enable Excitation Current Source 1. The output current of
each current source is controlled by the IOUT[3:0] bits of this
register.
It is also possible to configure the excitation current sources to
output current to a single output pin, either IEXC0 or IEXC1,
by using the IEXC0_DIR and IEXC1_DIR bits of IEXCON. This
allows up to 2 mA to output current on a single excitation pin.
ADC LOW POWER MODE
The ADuC7060/ADuC7061 allows the primary and auxiliary
ADCs to be placed in low power operating mode. When
configured for this mode, the ADC throughput time is reduced,
but the power consumption of the primary ADC is reduced by a
factor of about 4; the auxiliary ADC power consumption is
reduced by a factor of roughly 3. The maximum ADC
conversion rate in low power mode is 2 kHz. The operating
mode of the ADCs is controlled by the ADCMDE register. This
register configures the part for either normal mode (default),
low power mode, or low power plus mode. Low power plus
mode is the same as low power mode except that the PGA is
disabled. To place the ADCs into low power mode, the
following steps must be completed:
ADCMDE[4:3]—Setting these bits enables normal mode,
low power mode, or low power plus mode.
ADCMDE[5]—Setting this bit configures the part for low
power mode.
ADCMDE[7]—Clearing this bit further reduces power
consumption by reducing the frequency of the ADC clock.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 42 of 108
ADC COMPARATOR AND ACCUMULATOR
Every primary ADC result can be compared to a preset
threshold level (ADC0TH) as configured via ADCCFG[4:3]. An
MCU interrupt is generated if the absolute (sign independent)
value of the ADC result is greater than the preprogrammed
comparator threshold level. An extended function of this
comparator function allows user code to configure a threshold
counter (ADC0THV) to monitor the number of primary ADC
results that have occurred above or below the preset threshold
level. Again, an ADC interrupt is generated when the threshold
counter reaches a preset value (ADC0RCR).
Finally, a 32-bit accumulator (ADC0ACC) function can be
configured (ADCCFG[6:5]) allowing the primary ADC to add
(or subtract) multiple primary ADC sample results. User code
can read the accumulated value directly (ADC0ACC) without
any further software processing.
TEMPERATURE SENSOR
The ADuC7060/ADuC7061 provides a voltage output from an
on-chip band gap reference proportional to absolute
temperature. This voltage output can also be routed through the
front-end auxiliary ADC multiplexer (effectively, an additional
ADC channel input), facilitating an internal temperature sensor
channel that measures die temperature.
The internal temperature sensor is not designed for use as
an absolute ambient temperature calculator. It is intended
for use as an approximate indicator of the temperature of
the ADuC7060/ADuC7061 die.
The typical temperature coefficient is 0.28 mV/°C.
07079-034
ADC OUTPUT ( mV )
140
120
100
80
60
40
20
0
–60 –40 –20 020 40
TEMPERATURE (°C)
60 80 140
100 120
Figure 16. ADC Output vs. Temperature
ADC MMR INTERFACE
The ADCs are controlled and configured through a number of
MMRs that are described in detail in the following sections.
In response to an ADC interrupt, user code should interrogate
the ADCSTA MMR to determine the source of the interrupt.
Each ADC interrupt source can be individually masked via the
ADCMSKI MMR described in Table 41.
All primary ADC result ready bits are cleared by a read of the
ADC0DAT MMR. If the primary channel ADC is not enabled,
all ADC result ready bits are cleared by a read of the ADC1DAT
MMR. To ensure that primary ADC and auxiliary ADC
conversion data are synchronous, user code should first read
the ADC1DAT MMR and then the ADC0DAT MMR. New
ADC conversion results are not written to the ADCxDAT
MMRs unless the respective ADC result ready bits are first
cleared. The only exception to this rule is the data conversion
result updates when the ARM core is powered down. In this
mode, ADCxDAT registers always contain the most recent
ADC conversion result even though the ready bits are not
cleared.
ADC Status Register
Name: ADCSTA
Address: 0xFFFF0500
Default value: 0x0000
Access: Read only
Function: This read-only register holds general status
information related to the mode of operation
or current status of the ADuC7060/ADuC7061
ADCs.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 43 of 108
Table 40. ADCSTA MMR Bit Designations
Bit Name Description
15 ADCCALSTA ADC calibration status.
This bit is set automatically in hardware to indicate that an ADC calibration cycle has been completed.
This bit is cleared after ADCMDE is written to.
14 Not used.
This bit is reserved for future functionality.
13 ADC1CERR Auxiliary ADC conversion error.
This bit is set automatically in hardware to indicate that an auxiliary ADC conversion overrange or underrange has
occurred. The conversion result is clamped to negative full scale (underrange error) or positive full scale (overrange
error) in this case.
This bit is cleared when a valid (in-range) voltage conversion result is written to the ADC1DAT register.
12 ADC0CERR Primary ADC conversion error.
This bit is set automatically in hardware to indicate that a primary ADC conversion overrange or underrange has
occurred. The conversion result is clamped to negative full scale (underrange error) or positive full scale (overrange
error) in this case.
This bit is cleared when a valid (in-range) conversion result is written to the ADC0DAT register.
11:7 Not used. These bits are reserved for future functionality and should not be monitored by user code.
6 ADC0ATHEX ADC0 accumulator comparator threshold exceeded.
This bit is set when the ADC0 accumulator value in ADC0ACC exceeds the threshold value programmed in the ADC0
comparator threshold register, ADC0ATH.
This bit is cleared when the value in ADC0ACC does not exceed the value in ADC0ATH.
5 Not used. This bit is reserved for future functionality and should not be monitored by user code.
4 ADC0THEX Primary channel ADC comparator threshold. This bit is valid only if the primary channel ADC comparator is enabled
via the ADCCFG MMR.
This bit is set by hardware if the absolute value of the primary ADC conversion result exceeds the value written in the
ADC0TH MMR. If the ADC threshold counter is used (ADC0RCR), this bit is set only when the specified number of
primary ADC conversions equals the value in the ADC0THV MMR.
Otherwise, this bit is cleared.
3 ADC0OVR Primary channel ADC overrange bit
. If the overrange detect function is enabled via the ADCCFG MMR, this bit is set by
hardware if the primary ADC input is grossly (>30% approximate) overrange. This bit is updated every 125 µs. After it
is set, this bit can be cleared only by software when ADCCFG[2] is cleared to disable the function, or the ADC gain is
changed via the ADC0CON MMR.
2 Not used. This bit is reserved for future functionality and should not be monitored by user code.
1 ADC1RDY Auxiliary ADC result ready bit.
If the auxiliary channel ADC is enabled, this bit is set by hardware as soon as a valid conversion result is written in the
ADC1DAT MMR. It is also set at the end of a calibration sequence.
This bit is cleared by reading ADC1DAT followed by reading ADC0DAT. ADC0DAT must be read to clear this bit, even if
the primary ADC is not enabled.
0 ADC0RDY Primary ADC result ready bit.
If the primary channel ADC is enabled, this bit is set by hardware as soon as a valid conversion result is written in the
ADC0DAT MMR. It is also set at the end of a calibration sequence.
This bit is cleared by reading ADC0DAT.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 44 of 108
ADC Interrupt Mask Register
Name: ADCMSKI
Address: 0xFFFF0504
Default value: 0x0000
Access: Read and write
Function: This register allows the ADC interrupt sources to be enabled individually. The bit positions in this register are the
same as the lower eight bits in the ADCSTA MMR. If a bit is set by user code to 1, the respective interrupt is enabled.
By default, all bits are 0, meaning all ADC interrupt sources are disabled.
Table 41. ADCMSKI MMR Bit Designations
Bit Name Description
7 Not used. This bit is reserved for future functionality and should not be monitored by user code.
6 ADC0ATHEX_INTEN ADC0 accumulator comparator threshold exceeded interrupt enable bit.
When set to 1, this bit enables an interrupt when the ADC0ATHEX bit in the ADCSTA register is set.
When this bit is cleared, this interrupt source is disabled.
5 Not used. This bit is reserved for future functionality and should not be monitored by user code.
4 ADC0THEX_INTEN Primary channel ADC comparator threshold exceeded interrupt enable bit.
When set to 1, this bit enables an interrupt when the ADC0THEX bit in the ADCSTA register is set.
When this bit is cleared, this interrupt source is disabled.
3 ADC0OVR_INTEN When set to 1, this bit enables an interrupt when the ADC0OVR bit in the ADCSTA register is set.
When this bit is cleared, this interrupt source is disabled.
2 Not used. This bit is reserved for future functionality and should not be monitored by user code.
1 ADC1RDY_INTEN Auxiliary ADC result ready bit.
When set to 1, this bit enables an interrupt when the ADC1RDY bit in the ADCSTA register is set.
When this bit is cleared, this interrupt source is disabled.
0 ADC0RDY_INTEN Primary ADC result ready bit.
When set to 1, this bit enables an interrupt when the ADC0RDY bit in the ADCSTA register is set.
When this bit is cleared, this interrupt source is disabled.
ADC Mode Register
Name: ADCMDE
Address: 0xFFFF0508
Default value: 0x03
Access: Read and write
Function: The ADC mode MMR is an 8-bit register that configures the mode of operation of the ADC subsystem.
Table 42. ADCMDE MMR Bit Designations
Bit Name Description
7 ADCCLKSEL Set this bit to 1 to enable ADCCLK = 512 kHz. This bit should be set for normal ADC operation.
Clear this bit to enable ADCCLK = 131 kHz. This bit should be cleared for low power ADC operation.
6 Not used. This bit is reserved for future functionality and should not be monitored by user code.
5 ADCLPMEN Enable low power mode. This bit has no effect if ADCMDE[4:3] = 00 (ADC is in normal mode).
This bit must be set to 1 in low power mode.
Clearing this bit in low power mode results in erratic ADC results.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 45 of 108
Bit Name Description
4:3 ADCLPMCFG[1:0] ADC power mode configuration.
[00] = ADC normal mode. If enabled, the ADC operates with normal current consumption yielding optimum
electrical performance.
[01] = ADC low power mode.
[10] = ADC normal mode, same as [00].
[11] = ADC low power plus mode (low power mode and PGA off).
2:0 ADCMD[2:0] ADC operation mode configuration.
[000] = ADC power-down mode. All ADC circuits and the input amplifier are powered down.
[001] = ADC continuous conversion mode. In this mode, any enabled ADC continuously converts at a
frequency equal to fADC. ADCxRDY must be cleared to enable new data to be written to ADC0DAT/ADC1DAT.
[010] = ADC single conversion mode. In this mode, any enabled ADC performs a single conversion. The ADC
enters idle mode when the single shot conversion is complete. A single conversion takes two to three ADC clock
cycles, depending on the chop mode.
[011] = ADC idle mode. In this mode, the ADC is fully powered on but is held in reset. The part enters this mode
after calibration.
[100] = ADC self-offset calibration. In this mode, an offset calibration is performed on any enabled ADC using
an internally generated 0 V. The calibration is carried out at the user-programmed ADC settings; therefore, as
with a normal single ADC conversion, it takes two to three ADC conversion cycles before a fully settled
calibration result is ready. The calibration result is automatically written to the ADCxOF MMR of the respective
ADC. The ADC returns to idle mode, and the calibration and conversion ready status bits are set at the end of
an offset calibration cycle.
Note: Always use ADC0 for single-ended self-calibration cycles on the primary ADC. Always use ADC0/ADC1
when self-calibrating for a differential input to the primary ADC.
[101] = ADC self-gain calibration. In this mode, a gain calibration against an internal reference voltage is
performed on all enabled ADCs. A gain calibration is a two-stage process and takes twice the time of an offset
calibration. The calibration result is automatically written to the ADCxGN MMR of the respective ADC. The ADC
returns to idle mode and the calibration and conversion ready status bits are set at the end of a gain calibration
cycle. An ADC self-gain calibration should only be carried out on the primary channel ADC.
Note that self-gain calibration works only when the gain = 1; do not use it when the gain > 1.
[110] = ADC system zero-scale calibration. In this mode, a zero-scale calibration is performed on enabled ADC
channels against an external zero-scale voltage driven at the ADC input pins. To do this, short the channel externally.
[111] = ADC system full-scale calibration. In this mode, a full-scale calibration is performed on enabled ADC
channels against an external full-scale voltage driven at the ADC input pins. The ADCxGN register is updated
after a full-scale calibration sequence.
Primary ADC Control Register
Name: ADC0CON
Address: 0xFFFF050C
Default value: 0x8000
Access: Read and write
Function: The primary channel ADC control MMR is a 16-bit register. If the primary ADC is reconfigured via ADC0CON, the
auxiliary ADC is also reset.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 46 of 108
Table 43. ADC0CON MMR Bit Designations
Bit Name Description
15 ADC0EN Primary channel ADC enable.
This bit is set to 1 by user code to enable the primary ADC.
Clear
ing this bit to 0 powers down the primary ADC and resets the respective ADC ready bit in the ADCSTA MMR
to 0.
14:13 ADC0DIAG[1:0] Diagnostic current source enable bits.
[00] = current sources off.
[01] = enables a 50 μA current source on the selected positive input (for example, ADC0).
[10] = enables a 50 μA current source on the selected negative input (for example, ADC1).
[11] = enables a 50 μA current source on both selected inputs (for example, ADC0 and ADC1).
12
HIGHEXTREF0
This bit must be set high if the external reference for ADC0 exceeds 1.35 V. This results in the reference source
being divided by 2.
Clear this bit when using the internal reference or an external reference of less than 1.35 V.
11 AMP_CM This bit is set to 1 by user to set the PGA output common-mode voltage to AVDD/2.
This bit is cleared to 0 by user code to set the PGA output common-mode voltage to the PGA input common-
mode voltage level.
10 ADC0CODE Primary channel ADC output coding.
This bit is set to 1 by user code to configure primary ADC output coding as unipolar.
This bit is cleared to 0 by user code to configure primary ADC output coding as twos complement.
9:6 ADC0CH[3:0] Primary channel ADC input select. Note that single-ended channels are selected with respect to ADC5. Bias
ADC5 to a minimum level of 0.1 V.
[0000] = ADC0/ADC1 (differential mode).
[0001] = ADC0/ADC5 (single-ended mode).
[0010] = ADC1/ADC5 (single-ended mode).
[0011] = VREF+, VREF−. Note: This is the reference selected by the ADC0REF bits.
[0100] = Not used. This bit combination is reserved for future functionality and should not be written.
[0101] = ADC2/ADC3 (differential mode).
[0110] = ADC2/ADC5 (single-ended mode).
[0111] = ADC3/ADC5 (single-ended mode).
[1000] = internal short to ADC1.
[1001] = internal short to ADC1.
5:4 ADC0REF[1:0] Primary channel ADC reference select.
[00] = internal reference selected. In ADC low power mode, the voltage reference selection is controlled by
ADCMDE[5].
[01] = external reference inputs (VREF+, VREF) selected. Set the HIGHEXTREF0 bit if the reference voltage
exceeds 1.3 V.
[10] = auxiliary external reference inputs (ADC4/EXT_REF2IN+, ADC5/EXT_REF2IN−) selected. Set the
HIGHEXTREF0 bit if the reference voltage exceeds 1.3 V.
[11] = (AVDD, AGND) divide-by-two selected.
3:0 ADC0PGA[3:0]. Primary channel ADC gain select. Note, nominal primary ADC full-scale input voltage = (VREF/gain).
[0000] = ADC0 gain of 1. Buffer of negative input is bypassed.
[0001] = ADC0 gain of 2.
[0010] = ADC0 gain of 4 (default value). Enables the in-amp.
[0011] = ADC0 gain of 8.
[0100] = ADC0 gain of 16.
[0101] = ADC0 gain of 32.
[0110] = ADC0 gain of 64 (maximum PGA gain setting).
[0111] = ADC0 gain of 128 (extra gain implemented digitally).
[1000] = ADC0 gain of 256.
[1001] = ADC0 gain of 512.
[1XXX] = ADC0 gain is undefined.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 47 of 108
Auxiliary ADC Control Register
Name: ADC1CON
Address: 0xFFFF0510
Default value: 0x0000
Access: Read and write
Function: The auxiliary ADC control MMR is a 16-bit register.
Table 44. ADC1CON MMR Bit Designations
Bit Name Description
15 ADC1EN Auxiliary channel ADC enable.
This bit is set to 1 by user code to enable the auxiliary ADC.
Clearing this bit to 0 powers down the auxiliary ADC.
14:13 ADC1DIAG[1:0] Diagnostic current source enable bits. This is the same current source as that used on ADC0DIAG[1:0]. The
ADCs cannot enable the diagnostic current sources at the same time.
[00]= current sources off.
[01] = enables a 50 μA current source on selected positive input (for example, ADC2).
[10] = enables a 50 μ A current source on selected negative input (for example, ADC3).
[11] = enables a 50 μ A current source on both selected inputs (for example, ADC2 and ADC3).
12 HIGHEXTREF1 This bit must be set high if the external reference for ADC1 exceeds 1.35 V. This results in the reference
source being divided by 2.
Clear this bit when using the internal reference or an external reference of less than 1.35 V.
11 ADC1CODE Auxiliary channel ADC output coding.
This bit is set to 1 by user code to configure auxiliary ADC output coding as unipolar.
This bit is cleared to 0 by user code to configure auxiliary ADC output coding as twos complement.
10:7 ADC1CH[3:0] Auxiliary channel ADC input select. Note: Single-ended channels are selected with respect to ADC5. Bias
ADC5 to a minimum level of 0.1 V.
[0000] = ADC2/ADC3 (differential mode).
[0001] = ADC4/ADC5 (differential mode).
[0010] = ADC6/ADC7 (differential mode).
[0011] = ADC8/ADC9 (differential mode).
[0100] = ADC2/ADC5 (single-ended mode).
[0101] = ADC3/ADC5 (single-ended mode).
[0110] = ADC4/ADC5 (single-ended mode).
[0111] = ADC6/ADC5 (single-ended mode).
[1000] = ADC7/ADC5 (single-ended mode).
[1001] = ADC8/ADC5 (single-ended mode).
[1010] = ADC9/ADC5 (single-ended mode).
[1011] = internal temperature sensor+/internal temperature sensor−.
[1100] = VREF+, VREF. Note: This is the reference selected by the ADC1REF bits.
[1101] = DAC_OUT/AGND.
[1110] = undefined.
[1111] = internal short to ADC3.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 48 of 108
Bit Name Description
6:4 ADC1REF[2:0] Auxiliary channel ADC reference select.
[000] = internal reference selected. In ADC low power mode, the voltage reference selection is controlled by
ADCMODE[5].
[001] = external reference inputs (VREF+, VREF) selected. Set the HIGHEXTREF1 bit if reference voltage
exceeds 1.3 V.
[010] = auxiliary external reference inputs (ADC4/EXT_REF2IN+, ADC5/EXT_REF2IN) selected. Set the
HIGHEXTREF1 bit if reference voltage exceeds 1.35 V.
[011] = (AVDD, AGND) divide-by-2 selected. If this configuration is selected, the HIGHEXTREF1 bit is set
automatically.
[100] = (AVDD, ADC3). ADC3 can be used as the negative input terminal for the reference source.
[101] to [111] = reserved.
3:2 BUF_BYPASS[1:0] Buffer bypass.
[00] = full buffer on. Both positive and negative buffer inputs active.
[01] = negative buffer is bypassed, positive buffer is on.
[10] = negative buffer is on, positive buffer is bypassed.
[11] = full buffer bypass. Both positive and negative buffer inputs are off.
1:0
Digital gain. Select for auxiliary ADC inputs.
[00] = ADC1 gain = 1.
[01] = ADC1 gain = 2.
[10] = ADC1 gain = 4.
[11] = ADC1 gain = 8.
ADC Filter Register
Name: ADCFLT
Address: 0xFFFF0514
Default value: 0x0007
Access: Read and write
Function: The ADC filter MMR is a 16-bit register that controls the speed and resolution of both the on-chip ADCs. Note that, if
ADCFLT is modified, the primary and auxiliary ADCs are reset. When changing conversions speeds, put the ADC
into idle mode before restarting.
Table 45. ADCFLT MMR Bit Designations
Bit Name Description
15 CHOPEN Chop enable. Set by user to enable system chopping of all active ADCs. When this bit is set, the ADC has very low offset
errors and drift, but the ADC output rate is reduced by a factor of 3 if AF = 0 (see sinc3 decimation factor, Bits[6:0] in this
table). If AF > 0, then the ADC output update rate is the same with chop on or off. When chop is enabled, the settling time
is two output periods.
14 RAVG2 Running average-by-2 enable bit.
Set by user to enable a running-average-by-2 function, reducing ADC noise. This function is automatically enabled when
chopping is active. It is an optional feature when chopping is inactive, and if enabled (when chopping is inactive), does
not reduce the ADC output rate but does increase the settling time by one conversion period.
Cleared by user to disable the running average function.
13:8 AF[5:0] Averaging factor (AF). The values written to these bits are used to implement a programmable first-order sinc3 post filter.
The averaging factor can further reduce ADC noise at the expense of output rate as described in Bits[6:0] (sinc3
decimation factor) in this table.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 49 of 108
Bit Name Description
7 NOTCH2 Sinc3 modify. Set by user to modify the standard sinc3 frequency response to increase the filter stop-band rejection by
approximately 5 dB. This is achieved by inserting a second notch (NOTCH2) at
fNOTCH2 = 1.333 × fNOTCH
where fNOTCH is the location of the first notch in the response.
6:0 SF[6:0] Sinc3 decimation factor (SF).1 The value (SF) written in these bits controls the oversampling (decimation factor) of the
sinc3 filter. The output rate from the sinc3 filter is given by
fADC = (512,000/([SF + 1] × 64)) Hz2
when the chop bit (Bit 15, chop enable) = 0 and the averaging factor (AF) = 0. This is valid for all SF values ≤ 125.
For SF = 126, fADC is forced to 60 Hz.
For SF = 127, fADC is forced to 50 Hz.
For information on calculating the fADC for SF (other than 126 and 127) and AF values, refer to Table 46.
1 Due to limitations on the digital filter internal data path, there are some limitations on the combinations of the sinc3 decimation factor (SF) and averaging factor (AF)
that can be used to generate a required ADC output rate. This restriction limits the minimum ADC update in normal power mode to 4 Hz or 1 Hz in lower power mode.
2 In low power mode, the ADC is driven directly by the low power oscillator (131 kHz) and not 512 kHz. All fADC calculations should be divided by 4 (approximately).
Table 46. ADC Conversion Rates and Settling Times
Chop
Enabled
Averaging
Factor
Running
Average fADC Normal Mode fADC Low Power Mode tSETTLING1
No
No
No
64]1[
000,512
×+SF
64]1[
072,131
×+SF
ADC
f
3
No
No
Yes
64]1[
000,512
×+SF
64]1[
072,131
×+SF
ADC
f
4
No Yes No
]3[64]1[
000,512
AFSF +××+
]3[64]1[
072,131
AFSF +××+
ADC
f
1
No Yes Yes
]3[64]1[
000,512
AFSF +××+
]3[64]1[
072,131
AFSF +××+
ADC
f
2
Yes N/A N/A
3]3[64]1[
000,512
++××+ AFSF
3]3[64]1[
072,131
++××+ AFSF
ADC
f
2
1 An additional time of approximately 60 µs per ADC is required before the first ADC is available.
Table 47. Allowable Combinations of SF and AF
AF Range
SF
0
1 to 7
8 to 63
0 to 31
Yes
Yes
Yes
32 to 63
Yes
Yes
No
64 to 127 Yes No No
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 50 of 108
ADC Configuration Register
Name: ADCCFG
Address: 0xFFFF0518
Default value: 0x00
Access: Read and write
Function: The 8-bit ADC configuration MMR controls extended functionality related to the on-chip ADCs.
Table 48. ADCCFG MMR Bit Designations
Bit Name Description
7 GNDSW_EN Analog ground switch enable.
This bit is set to 1 by user software to connect the external GND_SW pin to an internal analog ground
reference point. This bit can be used to connect and disconnect external circuits and components to ground
under program control and thereby minimize dc current consumption when the external circuit or
component is not being used. This bit is used in conjunction with ADCCFG[1] to select a 20 kΩ resistor to
ground.
When this bit is cleared, the analog ground switch is disconnected from the external pin.
6:5 ADC0ACCEN[1:0] Primary channel (32-bit) accumulator enable.
[00] = accumulator disabled and reset to 0. The accumulator must be disabled for a full ADC conversion
(ADCSTA[0] set twice) before the accumulator can be re-enabled to ensure that the accumulator is reset.
[01] = accumulator active. Positive current values are added to the accumulator total; the accumulator can
overflow if allowed to run for >65,535 conversions. Negative current values are subtracted from the
accumulator total; the accumulator is clamped to a minimum value of 0.
[10] = accumulator active. Same as [01] except that there is no clamp. Positive current values are added to the
accumulator total; the accumulator can overflow if allowed to run for >65,535 conversions. The absolute
values of negative current are subtracted from the accumulator total; the accumulator in this mode continues
to accumulate negatively, below 0.
[11] = accumulator and comparator active. This causes an ADC0 interrupt if ADCMSKI[6] is set.
4:3 ADC0CMPEN[1:0] Primary ADC comparator enable bits.
[00] = comparator disabled.
[01] = comparator active. Interrupt asserted if absolute value of ADC0 conversion result |I| ≥ ADC0TH.
[10] = comparator count mode active. Interrupt asserted if absolute value of ADC0 conversion result |I|
ADC0TH for the number of ADC0THC conversions. A conversion value |I| < ADC0TH resets the threshold
counter value (ADC0THV) to 0.
[11] = comparator count mode active, interrupt asserted if absolute value of ADC0 conversion result |I| ≥
ADC0TH for the number of ADC0THC conversions. A conversion value |I| < ADC0TH decrements the threshold
counter value (ADC0THV) toward 0.
2 ADC0OREN ADC0 overrange enable.
Set by the user to enable a coarse comparator on the primary channel ADC. If the reading is grossly (>30%
approximate) overrange for the active gain setting, the overrange bit in the ADCSTA MMR is set. The ADC
reading must be outside this range for greater than 125 µs for the flag to be set.
Do not use this feature in ADC low power mode.
1 GNDSW_RES_EN Set to 1 to enable a 20 kΩ resistor in series with the ground switch.
Clear this bit to disable this resistor.
0
ADCRCEN
ADC result counter enable.
Set by user to enable the result count mode. ADC interrupts occur if ADC0RCR = ADC0RCV.
Cleared to disable the result counter. ADC interrupts occur after every conversion.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 51 of 108
Primary Channel ADC Data Register
Name: ADC0DAT
Address: 0xFFFF051C
Default value: 0x00000000
Access: Read only
Function: This ADC data MMR holds the 24-bit
conversion result from the primary ADC. The
ADC does not update this MMR if the ADC0
conversion result ready bit (ADCSTA[0]) is
set. A read of this MMR by the MCU clears
all asserted ready flags (ADCSTA[1:0]).
Table 49. ADC0DAT MMR Bit Designations
Bit Description
23:0 ADC0 24-bit conversion result.
Auxiliary Channel ADC Data Register
Name: ADC1DAT
Address: 0xFFFF0520
Default value: 0x00000000
Access: Read only
Function: This ADC data MMR holds the 24-bit
conversion result from the auxiliary ADC.
The ADC does not update this MMR if the
ADC0 conversion result ready bit
(ADCSTA[1]) is set.
Table 50. ADC1DAT MMR Bit Designations
Bit Description
23:0 ADC1 24-bit conversion result.
Primary Channel ADC Offset Calibration Register
Name: ADC0OF
Address: 0xFFFF0524
Default value: Part specific, factory programmed
Access: Read and write
Function: This ADC offset MMR holds a 16-bit offset
calibration coefficient for the primary ADC.
The register is configured at power-on with a
factory default value. However, this register
automatically overwrites if an offset
calibration of the primary ADC is initiated by
the user via bits in the ADCMDE MMR. User
code can write to this calibration register only
if the ADC is in idle mode. An ADC must be
enabled and in idle mode before being
written to any offset or gain register. The
ADC must be in idle mode for at least 23 µs.
Table 51. ADC0OF MMR Bit Designations
Bit Description
15:0 ADC0 16-bit offset calibration value.
Auxiliary Channel ADC Offset Calibration Register
Name: ADC1OF
Address: 0xFFFF0528
Default value: Part specific, factory programmed
Access: Read and write
Function: This offset MMR holds a 16-bit offset
calibration coefficient for the auxiliary
channel. The register is configured at power-
on with a factory default value. However, this
register is automatically overwritten if an
offset calibration of the auxiliary channel is
initiated by the user via bits in the ADCMDE
MMR. User code can write to this calibration
register only if the ADC is in idle mode. An
ADC must be enabled and in idle mode
before being written to any offset or gain
register. The ADC must be in idle mode for
at least 23 µs.
Table 52. ADC1OF MMR Bit Designations
Bit Description
15:0 ADC1 16-bit offset calibration value.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 52 of 108
Primary Channel ADC Gain Calibration Register
Name: ADC0GN
Address: 0xFFFF052C
Default value: Part specific, factory programmed
Access: Read and write
Function: This gain MMR holds a 16-bit gain
calibration coefficient for scaling the primary
ADC conversion result. The register is
configured at power-on with a factory default
value. However, this register is automatically
overwritten if a gain calibration of the
primary ADC is initiated by the user via bits
in the ADCMDE MMR. User code can write
to this calibration register only if the ADC is
in idle mode. An ADC must be enabled and
in idle mode before being written to any
offset or gain register. The ADC must be in
idle mode for at least 23 μs.
Table 53. ADC0GN MMR Bit Designations
Bits Description
15:0 ADC0 16-bit calibration gain value.
Auxiliary Channel Gain Calibration Register
Name: ADC1GN
Address: 0xFFFF0530
Default value: Part specific, factory programmed
Access: Read and write
Function: This gain MMR holds a 16-bit gain calibra-
tion coefficient for scaling an auxiliary channel
conversion result. The register is configured
at power-on with a factory default value.
However, this register is automatically over-
written if a gain calibration of the auxiliary
channel is initiated by the user via bits in the
ADCMDE MMR. User code can write to this
calibration register only if the ADC is in idle
mode. An ADC must be enabled and in idle
mode before being written to any offset or gain
register. The ADC must be in idle mode for at
least 23 µs.
Table 54. ADC1GN MMR Bit Designations
Bits Description
15:0 ADC1 16-bit gain calibration value.
Primary Channel ADC Result Counter Limit Register
Name: ADC0RCR
Address: 0xFFFF0534
Default value: 0x0001
Access: Read and write
Function: This 16-bit MMR sets the number of
conversions required before an ADC
interrupt is generated. By default, this
register is set to 0x01. The ADC counter
function must be enabled via the ADC result
counter enable bit in the ADCCFG MMR.
Table 55. ADC0RCR MMR Bit Designations
Bits Description
15:0 ADC0 result counter limit/reload register.
Primary Channel ADC Result Counter Register
Name: ADC0RCV
Address: 0xFFFF0538
Default value: 0x0000
Access: Read only
Function: This 16-bit, read-only MMR holds the
current number of primary ADC conversion
results. It is used in conjunction with
ADC0RCR to mask primary channel ADC
interrupts, generating a lower interrupt rate.
When ADC0RCV = ADC0RCR, the value in
ADC0RCV resets to 0 and recommences
counting. It can also be used in conjunction
with the accumulator (ADC0ACC) to allow
an average calculation to be taken. The
result counter is enabled via ADCCFG[0].
This MMR is also reset to 0 when the
primary ADC is reconfigured, that is, when
the ADC0CON or ADCMDE is written.
Table 56. ADC0RCV MMR Bit Designations
Bits Description
15:0
ADC0 result counter register.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 53 of 108
Primary Channel ADC Threshold Register
Name: ADC0TH
Address: 0xFFFF053C
Default value: 0x0000
Access: Read and write
Function: This 16-bit MMR sets the threshold against
which the absolute value of the primary ADC
conversion result is compared. In unipolar
mode, ADC0TH[15:0] are compared, and in
twos complement mode, ADC0TH[14:0] are
compared.
Table 57. ADC0TH MMR Bit Designations
Bit Description
15:0 ADC0 16-bit comparator threshold register.
Primary Channel ADC Threshold Counter Limit Register
Name: ADC0THC
Address: 0xFFFF0540
Default value: 0x0001
Access: Read and write
Function: This 8-bit MMR determines how many
cumulative (values below the threshold
decrement or reset the count to 0) primary
ADC conversion result readings above
ADC0TH must occur before the primary
ADC comparator threshold bit is set in the
ADCSTA MMR, generating an ADC
interrupt. The primary ADC comparator
threshold bit is asserted as soon as
ADC0THV = ADC0RCR.
Table 58. ADC0THC MMR Bit Designations
Bit Description
15:8 Reserved.
7:0 ADC0 8-bit threshold counter limit register.
Primary Channel ADC Threshold Counter Register
Name: ADC0THV
Address: 0xFFFF0544
Default value: 0x0000
Access: Read only
Function: This 8-bit MMR is incremented every time
the absolute value of a primary ADC
conversion result |Result| ≥ ADC0TH. This
register is decremented or reset to 0 every
time the absolute value of a primary ADC
conversion result |Result| < ADC0TH. The
configuration of this function is enabled via
the primary channel ADC comparator bits in
the ADCCFG MMR.
Table 59. ADC0THV MMR Bit Designations
Bit Description
7:0 ADC0 8-bit threshold exceeded counter register.
Primary Channel ADC Accumulator Register
Name: ADC0ACC
Address: 0xFFFF0548
Default value: 0x00000000
Access: Read only
Function: This 32-bit MMR holds the primary ADC
accumulator value. The primary ADC ready bit
in the ADCSTA MMR should be used to
determine when it is safe to read this MMR.
The MMR value is reset to 0 by disabling the
accumulator in the ADCCFG MMR or by
reconfiguring the primary channel ADC.
Table 60. ADC0ACC MMR Bit Designations
Bit Description
31:0 ADC0 32-bit accumulator register.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 54 of 108
Primary Channel ADC Comparator Threshold Register
Name: ADC0ATH
Address: 0xFFFF054C
Default value: 0x00000000
Access: Read and write
Function: This 32-bit MMR holds the threshold value for
the accumulator comparator of the primary
channel. When the accumulator value in
ADC0ACC exceeds the value in ADC0ATH,
the ADC0ATHEX bit in ADCSTA is set. This
causes an interrupt if the corresponding bit in
ADCMSKI is also enabled.
Table 61. ADC0ATH MMR Bit Designations
Bit Description
31:0 ADC0 32-bit comparator threshold register of the
accumulator.
INTERRUPT
(ADC0OVR)
16
|ABSVAL|
INTERRUPT
(ADC0RDY)
(READABLE)
CLEAR
(READABLE)
32
OPTI O N: UP/RESET
INTERRUPT
(ADC0ATHEX)
INTERRUPT
(ADC0THEX)
ADC0ATH
ADC0ACC
ACCUMULATOR
f
ADC
ADC0THC
ADC0TH
ADC0THV
UP/DOWN
ADC0RCV
COUNTER
ADC0RCR
(DEFAULT = 1)
f
ADC
f
ADC
f
ADC
PRIMARY
ADC
ADC0
ADC1
FAST
OVERRANGE
07079-011
Figure 17. Primary ADC Accumulator/Comparator/Counter Block Diagram
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 55 of 108
Excitation Current Sources Control Register
Name: IEXCON
Address: 0xFFFF0570
Default value: 0x00
Access: Read and write
Function: This 8-bit MMR controls the two excitation current sources, IEXC0 and IEXC1.
Table 62. IEXCON MMR Bit Designations
Bit Name Description
7 IEXC1_EN Enable bit for IEXC1 current source.
Set this bit to 1 to enable Excitation Current Source 1.
Clear this bit to disable Excitation Current Source 1.
6 IEXC0_EN Enable bit for IEXC0 current source.
Set this bit to 1 to enable Excitation Current Source 0.
Clear this bit to disable Excitation Current Source 0.
5 IEXC1_DIR Set this bit to 1 to direct Excitation Current Source 1 to the IEXC0 pin.
Set this bit to 0 to direct Excitation Current Source 1 to the IEXC1 pin.
4 IEXC0_DIR Set this bit to 1 to direct Excitation Current Source 0 to the IEXC1 pin.
Set this bit to 0 to direct Excitation Current Source 0 to the IEXC0 pin.
3:1 IOUT[3:1] These bits control the excitation current level for each source.
IOUT[3:1] = 000, excitation current = 0 μA + (IOUT[0] × 10 μA).
IOUT[3:1] = 001, excitation current = 200 μA + (IOUT[0] × 10 μA).
IOUT[3:1] = 010, excitation current = 400 μA + (IOUT[0] × 10 μA).
IOUT[3:1] = 011, excitation current = 600 μA + (IOUT[0] × 10 μA).
IOUT[3:1] = 100, excitation current = 800 μA + (IOUT[0] × 10 μA).
IOUT[3:1] = 101, excitation current = 1 mA + (IOUT[0] × 10 μA).
All other values are undefined.
0 IOUT[0] Set this bit to 1 to enable 10 μA diagnostic current source.
Clear this bit to 0 to disable 10 μA diagnostic current source.
EXAMPLE APPLICATION CIRCUITS
Figure 18 shows a simple bridge sensor interface to the
ADuC7060/ADuC7061, including the RC filters on the analog
input channels. Notice that the sense lines from the bridge
(connecting to the reference inputs) are wired separately from
the excitation lines (going to DVDD/AVDD and ground). This
results in a total of six wires going to the bridge. This 6-wire
connection scheme is a feature of most off-the-shelf bridge
transducers (such as load cells) that helps to minimize errors
that would otherwise result from wire impedances.
In Figure 19, the AD592 is an external temperature sensor used to
measure the thermocouple cold junction, and its output is con-
nected to the auxiliary channel. The ADR280 is an external 1.2 V
reference partalternatively, the internal reference can be used.
Here, the thermocouple is connected to the primary ADC as
a differential input to ADC0/ADC1. Note the resistor between
VREF+ and ADC1 to bias the ADC inputs above 100 m V.
Figure 20 shows a simple 4-wire RTD interface circuit. As with
the bridge transducer implementation in Figure 18, if a power
supply and a serial connection to the outside world are added,
Figure 20 represents a complete system.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 56 of 108
+2.5V
ADuC7060/
ADuC7061
ADC0 SPI
I
2
C
UART
GPIO
ADC1
07079-012
VREF+
AGND/DGND
AVDD/DVDD
VREF–
Figure 18. Bridge Interface Circuit
+2.5V
ADC0
ADuC7060/
ADuC7061
ADC1 SPI
I
2
C
UART
GPIO
ADC4
AD592
ADR280
07079-013
VREF+
AGND/DGND
AVDD/DVDD
VREF–
Figure 19. Example of a Thermocouple Interface Circuit
+2.5V
IEXC1
ADuC7060/
ADuC7061
AGND/DGND
ADC0 SPI
I
2
C
UART
GPIO
ADC1
AVDD/DVDD
RTD
VREF–
07079-014
VREF+
Figure 20. Example of an RTD Interface Circuit
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 57 of 108
DAC PERIPHERALS
DAC
The ADuC7060/ADuC7061 incorporates a voltage output DAC
on chip. In normal mode, the DAC resolution is 12-bits. In
interpolation, the DAC resolution is 16 bits with 14 effective
bits. The DAC has a rail-to-rail voltage output buffer capable of
driving 5 kΩ/100 pF.
The DAC has four selectable ranges.
0 V to VREF (internal band gap 1.2 V reference)
VREF− to VREF+
ADC5/EXT_REF2IN− to ADC4/EXT_REF2IN+
0 V to AVDD
The maximum signal range is 0 V to AVDD.
Op Amp Mode
As an option, the DAC can be disabled and its output buffer
used as an op amp.
MMR INTERFACE
The DAC is configurable through a control register and a data
register.
DAC0CON Register
Name: DAC0CON
Address: 0xFFFF0600
Default value: 0x0200
Access: Read and write
Table 63. DAC0CON MMR Bit Designations
Bit Name Description
15:10 Reserved.
9 DACPD Set to 1 to power down DAC output (DAC output is tristated).
Clear this bit to enable the DAC.
8 DACBUFLP Set to 1 to place the DAC output buffer in low power mode. See the Normal DAC Mode and Op Amp Mode
sections for further details on electrical specifications.
Clear this bit to enable the DAC buffer.
7 OPAMP Set to 1 to place the DAC output buffer in op amp mode.
Clear this bit to enable the DAC output buffer for normal DAC operation.
6 DACBUFBYPASS Set to 1 to bypass the output buffer and send the DAC output directly to the output pin.
Clear this bit to buffer the DAC output.
5 DACCLK Cleared to 0 to update the DAC on the negative edge of HCLK.
Set to 1 to update the DAC on the negative edge of Timer0. This mode is ideally suited for waveform generation
where the next value in the waveform is written to DAC0DAT at regular intervals of Timer0.
4 DACCLR Set to 1 for normal DAC operation.
Set to 0 to clear the DAC output and to set DAC0DAT to 0. Writing to this bit has an immediate effect on the DAC
output.
3 DACMODE Set to 1 to enable the DAC in 16-bit interpolation mode.
Set to 0 to enable the DAC in normal 12-bit mode.
2 Rate Used with interpolation mode.
Set to 1 to configure the interpolation clock as UCLK/16.
Set to 0 to configure the interpolation clock as UCLK/32.
1:0 DAC range bits [11] = 0 V to AVDD range.
[10] = ADC5/EXT_REF2INto ADC4/EXT_REF2IN+.
[01] = VREFto VREF+.
[00] = 0 V to V
REF
(1.2 V) range. Internal reference source.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 58 of 108
DAC0DAT Register
Name: DAC0DAT
Address: 0xFFFF0604
Default value: 0x00000000
Access: Read and write
Function: This 32-bit MMR contains the DAC output
value.
Table 64. DAC0DAT MMR Bit Designations
Bit Description
31:28 Reserved.
27:16 12-bit data for DAC0.
15:12 Extra four bits used in interpolation mode.
11:0 Reserved.
USING THE DAC
The on-chip DAC architecture consists of a resistor string DAC
followed by an output buffer amplifier.
The reference source for the DAC is user selectable in software. It
can be AVDD, VREF±, or ADCx/EXT_REF2IN±.
In 0-to-AVDD mode, the DAC output transfer function
spans from 0 V to the voltage at the AVDD pin.
In VREF± and ADCx/EXT_REF2IN± modes, the DAC
output transfer function spans from negative input voltage
to the voltage positive input pin. Note that these voltages
must never go below 0 V or above AVDD.
In 0-to-VREF mode, the DAC output transfer function spans
from 0 V to the internal 1.2 V reference, VREF.
The DAC can be configured in three different user modes:
normal mode, DAC interpolation mode, and op amp mode.
Normal DAC Mode
In this mode of operation, the DAC is configured as a 12-bit
voltage output DAC. By default, the DAC buffer is enabled, but
the output buffer can be disabled. If the DAC output buffer is
disabled, the DAC is capable of driving a capacitive load of only
20 pF. The DAC buffer is disabled by setting the DACBUFBYPASS
bit in DAC0CON.
The DAC output buffer amplifier features a true, rail-to-rail
output stage implementation. This means that when unloaded,
each output is capable of swinging to within less than 5 mV of
both AVDD and ground. Moreover, the linearity specification of
the DAC (when driving a 5 k resistive load to ground) is guar-
anteed through the full transfer function except for Code 0
to Code 100 and, in 0-to- AVDD mode only, Code 3995 to
Code 4095. Linearity degradation near ground and AVDD is
caused by saturation of the output amplifier, and a general
representation of its effects (neglecting offset and gain error) is
illustrated in Figure 21. The dotted line in Figure 21 indicates the
ideal transfer function, and the solid line represents what the
transfer function may look like with endpoint nonlinearities due
to saturation of the output amplifier. Note that Figure 21 repre-
sents a transfer function in 0-to-AVDD mode only. In 0-to-VREF
or, VREF±, and ADCx/EXT_REF2IN± modes (with VREF < AVDD
or ADCx/EXT_REF2IN± < AVDD), the lower nonlinearity is
similar. However, the upper portion of the transfer function
follows the ideal line all the way to the end (VREF in this case, not
AVDD), showing no signs of endpoint linearity errors.
AVDD
AVDD – 100mV
100mV
0x00000000 0x0FFF0000
07079-015
Figure 21. Endpoint Nonlinearities Due to Amplifier Saturation
The endpoint nonlinearities conceptually illustrated in Figure 21
worsen as a function of output loading. Most of the
ADuC7060/ADuC7061 data sheet specifications in normal
mode assume a 5 kΩ resistive load to ground at the DAC
output. As the output is forced to source or sink more current,
the nonlinear regions at the top or bottom (respectively) of
Figure 21 become larger. With larger current demands, this can
significantly limit output voltage swing.
DAC Interpolation Mode
In interpolation mode, a higher DAC output resolution of 16 bits
is achieved with a longer update rate than normal mode. The
update rate is controlled by the interpolation clock rate selected
in the DAC0CON register. In this mode, an external RC filter is
required to create a constant voltage.
Op Amp Mode
In op amp mode, the DAC output buffer is used as an op amp
with the DAC itself disabled.
ADC6 is the positive input to the op amp, ADC7 is the negative
input, and ADC8 is the output. In this mode, the DAC should
be powered down by setting Bit 9 of DAC0CON.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 59 of 108
NONVOLATILE FLASH/EE MEMORY
The ADuC7060/ADuC7061 incorporates Flash/EE memory
technology on chip to provide the user with nonvolatile, in-circuit
reprogrammable memory space.
Like EEPROM, flash memory can be programmed in-system
at a byte level, although it must first be erased. The erase is
performed in page blocks. As a result, flash memory is often
and, more correctly, referred to as Flash/EE memory.
Overall, Flash/EE memory represents a step closer to the
ideal memory device that includes nonvolatility, in-circuit
programmability, high density, and low cost. Incorporated in
the ADuC7060/ADuC7061, Flash/EE memory technology
allows the user to update program code space in-circuit,
without the need to replace one time programmable (OTP)
devices at remote operating nodes.
The ADuC7060/ADuC7061 contains a 32 kB array of Flash/EE
memory. The lower 30 kB are available to the user and the
upper 2 kB contain permanently embedded firmware, allowing
in-circuit serial download. These 2 kB of embedded firmware
also contain a power-on configuration routine that downloads
factory-calibrated coefficients to the various calibrated
peripherals (such as ADC, temperature sensor, and band gap
references). This 2 kB embedded firmware is hidden from user
code.
FLASH/EE MEMORY RELIABILITY
The Flash/EE memory arrays on the parts are fully qualified for
two key Flash/EE memory characteristics: Flash/EE memory
cycling endurance and Flash/EE memory data retention.
Endurance quantifies the ability of the Flash/EE memory to be
cycled through many program, read, and erase cycles. A single
endurance cycle is composed of four independent, sequential
events, defined as
Initial page erase sequence
Read/verify sequence for a single Flash/EE
Byte program sequence memory
Second read/verify sequence endurance cycle
In reliability qualification, every half word (16-bit wide)
location of the three pages (top, middle, and bottom) in the
Flash/EE memory is cycled 10,000 times from 0x0000 to
0xFFFF. The Flash/EE memory endurance qualification is
carried out in accordance with JEDEC Retention Lifetime
Specification A117 over the industrial temperature range of
−40°C to +125°C. The results allow the specification of a
minimum endurance figure over a supply temperature of
10,000 cycles.
Retention quantifies the ability of the Flash/EE memory to
retain its programmed data over time. Again, the parts are
qualified in accordance with the formal JEDEC Retention
Lifetime Specification A117 at a specific junction temperature
(TJ = 85°C). As part of this qualification procedure, the Flash/
EE memory is cycled to its specified endurance limit, described
previously, before data retention is characterized. This means
that the Flash/EE memory is guaranteed to retain its data for its
fully specified retention lifetime every time that the Flash/EE
memory is reprogrammed. Also note that retention lifetime,
based on activation energy of 0.6 eV, derates with TJ, as shown
in Figure 22.
150
300
450
600
30 40 55 70 85 100 125 135 150
RET E NTION (Y ears)
0
JUNCTION TEM P E RATURE (°C)
07079-016
Figure 22. Flash/EE Memory Data Retention
PROGRAMMING
The 30 kB of Flash/EE memory can be programmed in-circuit,
using the serial download mode or the provided JTAG mode.
Serial Downloading (In-Circuit Programming)
The ADuC7060/ADuC7061 facilitates code download via the
standard UART serial port. The parts enter serial download
mode after a reset or power cycle if the NTRST/BM pin is
pulled low through an external 1 kΩ resistor. When in serial
download mode, the user can download code to the full 30 kB
of Flash/EE memory while the device is in-circuit in its target
application hardware. An executable PC serial download is
provided as part of the development system for serial
downloading via the UART.
When the ADuC7060/ADuC7061 enters download mode, the
user should be aware that the internal watchdog is enabled with
a time-out period of 2 minutes. If the flash erase/write sequence
is not completed in this period, a reset occurs.
JTAG Access
The JTAG protocol uses the on-chip JTAG interface to facilitate
code download and debug.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 60 of 108
PROCESSOR REFERENCE PERIPHERALS
INTERRUPT SYSTEM
There are 15 interrupt sources on the ADuC7060/ADuC7061
that are controlled by the interrupt controller. All interrupts are
generated from the on-chip peripherals, except for the software
interrupt (SWI), which is programmable by the user. The
ARM7TDMI CPU core recognizes interrupts as one of two
types only: a normal interrupt request (IRQ) or a fast interrupt
request (FIQ). All the interrupts can be masked separately.
The control and configuration of the interrupt system are
managed through a number of interrupt related registers. The
bits in each IRQ and FIQ register represent the same interrupt
source, as described in Table 65.
Each ADuC7060/ADuC7061 contains a vectored interrupt
controller (VIC) that supports nested interrupts up to eight
levels. The VIC also allows the programmer to assign priority
levels to all interrupt sources. Interrupt nesting needs to be
enabled by setting the ENIRQN bit in the IRQCONN register.
A number of extra MMRs are used when the full vectored
interrupt controller is enabled.
Immediately save IRQSTA/FIQSTA upon entering the interrupt
service routine (ISR) to ensure that all valid interrupt sources
are serviced.
Table 65. IRQ/FIQ MMR Bit Designations
Bit Description Comments
0 All interrupts OR’ed
(FIQ only)
This bit is set if any FIQ is active
1 Software interrupt User programmable interrupt
source
2 Undefined This bit is not used
3
Timer0
General-Purpose Timer0
4 Timer1 or wake-up
timer
General-Purpose Timer1 or
wake-up timer
5 Timer2 or watchdog
timer
General-Purpose Timer2 or
watchdog timer
6 Timer3 or STI timer General-Purpose Timer3
7 Undefined This bit is not used
8 Undefined This bit is not used
9 Undefined This bit is not used
10 ADC ADC interrupt source bit
11
UART
UART interrupt source bit
12
SPI
SPI interrupt source bit
13 XIRQ0 (GPIO IRQ0) External Interrupt 0
14 XIRQ1 (GPIO IRQ1) External Interrupt 1
15 I2C master IRQ I2C master interrupt source bit
16 I2C slave IRQ I2C slave interrupt source bit
17 PWM PWM trip interrupt source bit
18 XIRQ2 (GPIO IRQ2) External Interrupt 2
19 XIRQ3 (GPIO IRQ3) External Interrupt 3
IRQ
The IRQ is the exception signal to enter the IRQ mode of the
processor. It services general-purpose interrupt handling of
internal and external events.
All 32 bits are logically ORed to create a single IRQ signal to
the ARM7TDMI core. The four 32-bit registers dedicated to
IRQ are described in the following sections.
IRQSIG
IRQSIG reflects the status of the different IRQ sources. If a
peripheral generates an IRQ signal, the corresponding bit in
the IRQSIG is set; otherwise, it is cleared. The IRQSIG bits clear
when the interrupt in the particular peripheral is cleared. All
IRQ sources can be masked in the IRQEN MMR. IRQSIG is
read only.
IRQSIG Register
Name: IRQSIG
Address: 0xFFFF0004
Default value: Undefined
Access: Read only
IRQEN
IRQEN provides the value of the current enable mask. When a
bit is set to 1, the corresponding source request is enabled
to create an IRQ exception. The IRQEN register cannot be used
to disable an interrupt. Clear to 0 has no effect.
IRQEN Register
Name: IRQEN
Address: 0xFFFF0008
Default value: 0x00000000
Access: Read and write
IRQCLR
IRQCLR is a write-only register that allows the IRQEN register
to clear to mask an interrupt source. Each bit that is set to 1
clears the corresponding bit in the IRQEN register without
affecting the remaining bits. The pair of registers, IRQEN and
IRQCLR, allows independent manipulation of the enable mask
without requiring an atomic read-modify-write. Clear to 0 has
no effect.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 61 of 108
IRQCLR Register
Name: IRQCLR
Address: 0xFFFF000C
Default value: 0x00000000
Access: Write only
IRQSTA
IRQSTA is a read-only register that provides the current
enabled IRQ source status (effectively a logic AND of the
IRQSIG and IRQEN bits). When set to 1, that source generates
an active IRQ request to the ARM7TDMI core. There is no
priority encoder or interrupt vector generation. This function is
implemented in software in a common interrupt handler
routine.
IRQSTA Register
Name: IRQSTA
Address: 0xFFFF0000
Default value: 0x00000000
Access: Read only
FAST INTERRUPT REQUEST (FIQ)
The fast interrupt request (FIQ) is the exception signal to enter
the FIQ mode of the processor. It is provided to service data
transfer or communication channel tasks with low latency. The
FIQ interface is identical to the IRQ interface and provides the
second level interrupt (highest priority). Four 32-bit registers
are dedicated to FIQ: FIQSIG, FIQEN, FIQCLR, and FIQSTA.
Bit 31 to Bit 1 of FIQSTA are logically ORed to create the FIQ
signal to the core and to Bit 0 of both the FIQ and IRQ registers
(FIQ source).
The logic for FIQEN and FIQCLR does not allow an interrupt
source to be enabled in both IRQ and FIQ masks. A bit set to 1
in FIQEN clears, as a side effect, the same bit in IRQEN.
Likewise, a bit set to 1 in IRQEN clears, as a side effect, the
same bit in FIQEN. An interrupt source can be disabled in both
IRQEN and FIQEN masks.
FIQSIG
FIQSIG reflects the status of the different FIQ sources. If a
peripheral generates an FIQ signal, the corresponding bit in
the FIQSIG is set; otherwise, it is cleared. The FIQSIG bits are
cleared when the interrupt in the particular peripheral is
cleared. All FIQ sources can be masked in the FIQEN MMR.
FIQSIG is read only.
FIQSIG Register
Name: FIQSIG
Address: 0xFFFF0104
Default value: Undefined
Access: Read only
FIQEN
FIQEN provides the value of the current enable mask. When a
bit is set to 1, the corresponding source request is enabled
to create an FIQ exception. When a bit is set to 0, the corre-
sponding source request is disabled or masked, which does not
create an FIQ exception. The FIQEN register cannot be used to
disable an interrupt.
FIQEN Register
Name: FIQEN
Address: 0xFFFF0108
Default value: 0x00000000
Access: Read and write
FIQCLR
FIQCLR is a write-only register that allows the FIQEN register
to clear in order to mask an interrupt source. Each bit that is set
to 1 clears the corresponding bit in the FIQEN register without
affecting the remaining bits. The pair of registers, FIQEN and
FIQCLR, allows independent manipulation of the enable mask
without requiring an atomic read-modify-write.
FIQCLR Register
Name: FIQCLR
Address: 0xFFFF010C
Default value: 0x00000000
Access: Write only
FIQSTA
FIQSTA is a read-only register that provides the current enabled
FIQ source status (effectively a logic AND of the FIQSIG and
FIQEN bits). When set to 1, that source generates an active FIQ
request to the ARM7TDMI core. There is no priority encoder
or interrupt vector generation. This function is implemented in
software in a common interrupt handler routine.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 62 of 108
FIQSTA Register
Name: FIQSTA
Address: 0xFFFF0100
Default value: 0x00000000
Access: Read only
PROGRAMMED INTERRUPTS
Because the programmed interrupts are not maskable, they are
controlled by another register (SWICFG) that writes into both
IRQSTA and IRQSIG registers and/or the FIQSTA and FIQSIG
registers at the same time.
SWICFG
SWICFG is a 32-bit register dedicated to software interrupt,
described in Table 66. This MMR allows control of a pro-
grammed source interrupt.
SWICFG Register
Name: SWICFG
Address: 0xFFFF0010
Default value: 0x00000000
Access: Write only
Table 66. SWICFG MMR Bit Designations
Bit Description
31:3 Reserved.
2 Programmed interrupt FIQ. Setting/clearing this bit
corresponds to setting/clearing Bit 1 of FIQSTA and
FIQSIG.
1 Programmed interrupt IRQ. Setting/clearing this bit
corresponds to setting/clearing Bit 1 of IRQSTA and
IRQSIG.
0 Reserved.
Any interrupt signal must be active for at least the minimum
interrupt latency time to be detected by the interrupt controller
and to be detected by the user in the IRQSTA/FIQSTA register.
VECTORED INTERRUPT CONTROLLER (VIC)
Each ADuC7060/ADuC7061 incorporates an enhanced
interrupt control system or vectored interrupt controller. The
vectored interrupt controller for IRQ interrupt sources is
enabled by setting Bit 0 of the IRQCONN register. Similarly, Bit
1 of IRQCONN enables the vectored interrupt controller for the
FIQ interrupt sources. The vectored interrupt controller
provides the following enhancements to the standard IRQ/FIQ
interrupts:
Vectored interruptsallows a user to define separate
interrupt service routine addresses for every interrupt
source. This is achieved by using the IRQBASE and
IRQVEC registers.
IRQ/FIQ interruptscan be nested up to eight levels
depending on the priority settings. An FIQ still has a
higher priority than an IRQ. Therefore, if the VIC is
enabled for both the FIQ and IRQ and prioritization is
maximized, it is possible to have 16 separate interrupt
levels.
Programmable interrupt priorities—using the IRQP0 to
IRQP2 registers, an interrupt source can be assigned an
interrupt priority level value from 0 to 7.
VIC MMRS
IRQBASE
The vector base register, IRQBASE, is used to point to the start
address of memory used to store 32 pointer addresses. These
pointer addresses are the addresses of the individual interrupt
service routines.
IRQBASE Register
Name: IRQBASE
Address: 0xFFFF0014
Default value: 0x00000000
Access: Read and write
Table 67. IRQBASE MMR Bit Designations
Bit Access Initial Value Description
31:16 Read only Reserved Always read as 0.
15:0 R/W 0 Vector base address.
IRQVEC
The IRQ interrupt vector register, IRQVEC, points to a memory
address containing a pointer to the interrupt service routine of
the currently active IRQ. This register should be read only when
an IRQ occurs and IRQ interrupt nesting has been enabled by
setting Bit 0 of the IRQCONN register.
IRQVEC Register
Name: IRQVEC
Address: 0xFFFF001C
Default value: 0x00000000
Access: Read only
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 63 of 108
Table 68. IRQVEC MMR Bit Designations
Bit Access
Initial
Value Description
31:23 Read
only
0 Always read as 0.
22:7 Read
only
0 IRQBASE register value.
6:2 Read
only
0 Highest priority IRQ source. This
is a value between 0 to 19 repre-
senting the possible interrupt
sources. For example, if the highest
currently active IRQ is Timer1, then
these bits are [01000].
1:0
Reserved
0
Reserved bits.
Priority Registers
The interrupt priority registers, IRQP0, IRQP1, and IRQP2,
allow each interrupt source to have its priority level configured
for a level between 0 and 7. Level 0 is the highest priority level.
IRQP0 Register
Name: IRQP0
Address: 0xFFFF0020
Default value: 0x00000000
Access: Read and write
Table 69. IRQP0 MMR Bit Designations
Bit Name Description
31:27 Reserved Reserved bits.
26:24 T3PI A priority level of 0 to 7 can be set for
Timer3.
23 Reserved Reserved bit.
22:20 T2PI A priority level of 0 to 7 can be set for
Timer2.
19 Reserved Reserved bit.
18:16 T1PI A priority level of 0 to 7 can be set for
Timer1.
15 Reserved Reserved bit.
14:12 T0PI A priority level of 0 to 7 can be set for
Timer0.
11:7 Reserved Reserved bits.
6:4
SWINTP
A priority level of 0 to 7 can be set for the
software interrupt source.
3:0 Reserved Interrupt 0 cannot be prioritized.
IRQP1 Register
Name: IRQP1
Address: 0xFFFF0024
Default value: 0x00000000
Access: Read and write
Table 70. IRQP1 MMR Bit Designations
Bit Name Description
31 Reserved Reserved bit.
30:28 I2CMPI A priority level of 0 to 7 can be set for I2C
master.
27 Reserved Reserved bit.
26:24 IRQ1PI A priority level of 0 to 7 can be set for IRQ1.
23 Reserved Reserved bit.
22:20 IRQ0PI A priority level of 0 to 7 can be set for IRQ0.
19 Reserved Reserved bit.
18:16 SPIMPI A priority level of 0 to 7 can be set for SPI
master.
15 Reserved Reserved bit.
14:12 UARTPI A priority level of 0 to 7 can be set for UART.
11 Reserved Reserved bit.
10:8 ADCPI A priority level of 0 to 7 can be set for the
ADC interrupt source.
7:0 Reserved Reserved bits.
IRQP2 Register
Name: IRQP2
Address: 0xFFFF0028
Default value: 0x00000000
Access: Read and write
Table 71. IRQP2 MMR Bit Designations
Bit
Name
Description
31:15 Reserved Reserved bit.
14:12 IRQ3PI A priority level of 0 to 7 can be set for IRQ3.
11 Reserved Reserved bit.
10:8 IRQ2PI A priority level of 0 to 7 can be set for IRQ2.
7 Reserved Reserved bit.
6:4 SPISPI A priority level of 0 to 7 can be set for SPI
slave.
3
Reserved
Reserved bit.
2:0 I2CSPI A priority level of 0 to 7 can be set for I2C
slave.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 64 of 108
IRQCONN
The IRQCONN register is the IRQ and FIQ control register. It
contains two active bits: the first to enable nesting and
prioritization of IRQ interrupts, and the other to enable nesting
and prioritization of FIQ interrupts.
If these bits are cleared, FIQs and IRQs can still be used, but it is
not possible to nest IRQs or FIQs. Neither is it possible to set an
interrupt source priority level. In this default state, an FIQ does
have a higher priority than an IRQ.
IRQCONN Register
Name: IRQCONN
Address: 0xFFFF0030
Default value: 0x00000000
Access: Read and write
Table 72. IRQCONN MMR Bit Designations
Bit Name Description
31:2 Reserved These bits are reserved and should not be
written to.
1 ENFIQN Setting this bit to 1 enables nesting of FIQ
interrupts. Clearing this bit means no nesting
or prioritization of FIQs is allowed.
0 ENIRQN Setting this bit to 1 enables nesting of IRQ
interrupts. Clearing this bit means no nesting
or prioritization of IRQs is allowed.
IRQSTAN
If IRQCONN[0] is asserted and IRQVEC is read, then one of
these bits is asserted. The bit that asserts depends on the
priority of the IRQ. If the IRQ is of Priority 0, then Bit 0 asserts;
Priority 1, then Bit 1 asserts; and so forth. When a bit is set in
this register, all interrupts of that priority and lower are blocked.
To clear a bit in this register, all bits of a higher priority must be
cleared first. It is possible to clear only one bit at a time. For
example, if this register is set to 0x09, writing 0xFF changes the
register to 0x08, and writing 0xFF a second time changes the
register to 0x00.
IRQSTAN Register
Name: IRQSTAN
Address: 0xFFFF003C
Default value: 0x00000000
Access: Read and write
Table 73. IRQSTAN MMR Bit Designations
Bit Name Description
31:8 Reserved These bits are reserved and should not be
written to.
7:0 Setting this bit to 1 enables nesting of FIQ
interrupts. Clearing this bit means no nesting
or prioritization of FIQs is allowed.
FIQVEC
The FIQ interrupt vector register, FIQVEC, points to a memory
address containing a pointer to the interrupt service routine of
the currently active FIQ. This register should be read only when
an FIQ occurs and FIQ interrupt nesting has been enabled by
setting Bit 1 of the IRQCONN register.
FIQVEC Register
Name: FIQVEC
Address: 0xFFFF011C
Default value: 0x00000000
Access: Read only
Table 74. FIQVEC MMR Bit Designations
Bit Access
Initial
Value Description
31:23 Read only 0 Always read as 0.
22:7 Read only 0 IRQBASE register value.
6:2 0 Highest priority FIQ source. This is
a value between 0 to 19 that
represents the possible interrupt
sources. For example, if the
highest currently active FIQ is
Timer1, then these bits are
[01000].
1:0 Reserved 0 Reserved bits.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 65 of 108
FIQSTAN
If IRQCONN[1] is asserted and FIQVEC is read, then one of
these bits asserts. The bit that asserts depends on the priority of
the FIQ. If the FIQ is of Priority 0, Bit 0 asserts; Priority 1, Bit 1
asserts; and so forth.
When a bit is set in this register, all interrupts of that priority
and lower are blocked.
To clear a bit in this register, all bits of a higher priority must be
cleared first. It is possible to clear only one bit as a time. For
example, if this register is set to 0x09, writing 0xFF changes the
register to 0x08, and writing 0xFF a second time changes the
register to 0x00.
FIQSTAN Register
Name: FIQSTAN
Address: 0xFFFF013C
Default value: 0x00000000
Access: Read and write
Table 75. FIQSTAN MMR Bit Designations
Bit
Name
Description
31:8 Reserved These bits are reserved and should not be
written to.
7:0 Setting this bit to 1 enables nesting of FIQ
interrupts. Clearing this bit means no nesting
or prioritization of FIQs is allowed.
External Interrupts (IRQ0 to IRQ3)
The ADuC7060/ADuC7061 provides up to four external
interrupt sources. These external interrupts can be individually
configured as level triggered or rising/falling edge triggered.
To enable the external interrupt source, the appropriate bit must
first be set in the FIQEN or IRQEN register. To select the
required edge or level to trigger on, the IRQCONE register
must be appropriately configured.
To properly clear an edge based external IRQ interrupt, set the
appropriate bit in the IRQCLRE register.
IRQCONE Register
Name: IRQCONE
Address: 0xFFFF0034
Default value: 0x00000000
Access: Read and write
Table 76. IRQCONE MMR Bit Designations
Bit
Name
Description
31:8 Reserved These bits are reserved and should not be written to.
7:6 IRQ3SRC[1:0] [11] = External IRQ3 triggers on falling edge.
[10] = External IRQ3 triggers on rising edge.
[01] = External IRQ3 triggers on low level.
[00] = External IRQ3 triggers on high level.
5:4 IRQ2SRC[1:0] [11] = External IRQ2 triggers on falling edge.
[10] = External IRQ2 triggers on rising edge.
[01] = External IRQ2 triggers on low level.
[00] = External IRQ2 triggers on high level.
3:2 IRQ1SRC[1:0] [11] = External IRQ1 triggers on falling edge.
[10] = External IRQ1 triggers on rising edge.
[01] = External IRQ1 triggers on low level.
[00] = External IRQ1 triggers on high level.
1:0 IRQ0SRC[1:0] [11] = External IRQ0 triggers on falling edge.
[10] = External IRQ0 triggers on rising edge.
[01] = External IRQ0 triggers on low level.
[00] = External IRQ0 triggers on high level.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 66 of 108
IRQCLRE Register
Name: IRQCLRE
Address: 0xFFFF0038
Default value: 0x00000000
Access: Read and write
Table 77. IRQCLRE MMR Bit Designations
Bit Name Description
31:20 Reserved These bits are reserved and should not be
written to.
19 IRQ3CLRI A 1 must be written to this bit in the IRQ3
interrupt service routine to clear an edge
triggered IRQ3 interrupt.
18 IRQ2CLRI A 1 must be written to this bit in the IRQ2
interrupt service routine to clear an edge
triggered IRQ2 interrupt.
17:15 Reserved These bits are reserved and should not be
written to.
14 IRQ1CLRI A 1 must be written to this bit in the IRQ1
interrupt service routine to clear an edge
triggered IRQ1 interrupt.
13 IRQ0CLRI A 1 must be written to this bit in the IRQ0
interrupt service routine to clear an edge
triggered IRQ0 interrupt.
12:0 Reserved These bits are reserved and should not be
written to.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 67 of 108
TIMERS
The ADuC7060/ADuC7061 features four general-purpose
timer/counters.
Timer0
Timer1 or wake-up timer
Timer2 or watchdog timer
Timer3
The four timers in their normal mode of operation can be either
free running or periodic.
In free running mode, the counter decrements/increments from
the maximum or minimum value until zero/full scale and starts
again at the maximum or minimum value.
In periodic mode, the counter decrements/increments from the
value in the load register (TxLD MMR) until zero/full scale and
starts again at the value stored in the load register. Note that the
TxLD MMR should be configured before the TxCON MMR.
The timer interval is calculated as follows:
If the timer is set to count down then
Interval = (TxLD x Prescaler) / Source Clock
If the timer is set to count up then
Interval = ((Full Scale - TxLD) x Prescaler) / Source Clock.
The value of a counter can be read at any time by accessing its
value register (TxVAL). Timers are started by writing in the
control register of the corresponding timer (TxCON).
In normal mode, an IRQ is generated each time that the value
of the counter reaches zero (if counting down) or full scale (if
counting up). An IRQ can be cleared by writing any value to the
clear register of the particular timer (TxCLRI).
Table 78. Timer Event Capture
Bit Description
0 Reserved
1 Timer0
2 Timer1 or wake-up timer
3 Timer2 or watchdog timer
4 Timer3
5 Reserved
6 Reserved
7 Reserved
8 ADC
9 UART
10 SPI
11 XIRQ0
12 XIRQ1
13
I
2
C master
14 I2C slave
15 PWM
16 XIRQ2 (GPIO IRQ2)
17 XIRQ3 (GPIO IRQ3)
HR:MIN:SEC: 1/128 FORMAT
To use the timer in Hr : Min : Sec : hundreds format the 32768
kHz clock and prescaler of 256 should be selected. The
hundreds field does not represent milliseconds but 1/128 of a
second (256/32768).The bits representing the Hour, minute and
second are not consecutive in the register. This arrangement
applies to TxLd and TxVAL when using the Hr : Min : Sec :
hundreds format as set in TxCON[5:4]. See Table 79 for more
details.
Table 79. Hr:Min:Sec: hundreds format
Bit Value Description
31:24 0 to 23 or 0 to 255 Hours
23:22 0 Reserved
21:16 0 to 59 Minutes
15:14 0 Reserved
13:8 0 to 59 Seconds
7 0 Reserved
6:0 0 to 127 1/128 of second
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 68 of 108
TIMER0
Timer0 is a 32-bit, general-purpose timer, count down or count
up, with a programmable prescaler. The prescaler source can be
the low power 32.768 kHz oscillator, the core clock, or from one
of two external GPIOs. This source can be scaled by a factor of
1, 16, 256, or 32,768. This gives a minimum resolution of 97.66 ns
with a prescaler of 1 (ignoring the external GPIOs).
The counter can be formatted as a standard 32-bit value or as
hours:minutes:seconds:hundredths.
Timer0 has a capture register (T0CAP) that is triggered by a
selected IRQ source initial assertion. When triggered, the current
timer value is copied to T0CAP, and the timer continues to run.
Use this feature to determine the assertion of an event with
increased accuracy. Note that only peripherals that have their
IRQ source enabled can be used with the timer capture feature.
The Timer0 interface consists of five MMRS: T0LD, T0VAL,
T0CAP, T0CLRI, and T0CON.
T0LD, T0VAL, and T0CAP are 32-bit registers and hold
32-bit, unsigned integers of which T0VAL and T0CAP are
read only.
T0CLRI is an 8-bit register and writing any value to this
register clears the Timer0 interrupt.
T0CON is the configuration MMR, which is described in
Table 80.
Timer0 features a postscaler that allows the user to count between
1 and 256 the number of Timer0 timeouts. To activate the post-
scaler, the user sets Bit 18 and writes the desired number to count
into Bits[24:31] of T0CON. When that number of timeouts is
reached, Timer0 can generate an interrupt if T0CON[18] is set.
Note that, if the part is in a low power mode and Timer0 is
clocked from the GPIO or low power oscillator source, Timer0
continues to operate.
Timer0 reloads the value from T0LD when Timer0 overflows.
Timer0 Load Registers
Name: T0LD
Address: 0xFFFF0320
Default value: 0x00000000
Access: Read and write
Function: T0LD is a 32-bit register that holds the 32-bit
value that is loaded into the counter.
Timer0 Clear Register
Name: T0CLRI
Address: 0xFFFF032C
Access: Write only
Function: This 8-bit, write-only MMR is written
(with any value) by user code to clear the
interrupt.
Timer0 Value Register
Name: T0VAL
Address: 0xFFFF0324
Default value: 0xFFFFFFFF
Access: Read only
Function: T0VAL is a 32-bit register that holds the
current value of Timer0.
TIMER0
VALUE
32.768kHz OSCI LL ATOR
CORE CLOCK
FREQUENCY/CD
CORE CLOCK
FREQUENCY
GPIO
PRESCALER
1, 16, 256, OR 32, 768 TIMER0 IRQ
32-BIT
UP/ DOWN COUNT E R 8-BIT
POSTSCALER
32-BI T LOAD
CAPTURE
IRQ[31:0]
07079-017
Figure 23. Timer0 Block Diagram
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 69 of 108
Timer0 Capture Register
Name: T0CAP
Address: 0xFFFF0330
Default value: 0x00000000
Access: Read only
Function: This 32-bit register holds the 32-bit value captured by an enabled IRQ event.
Timer0 Control Register
Name: T0CON
Address: 0xFFFF0328
Default value: 0x01000000
Access: Read and write
Function: This 32-bit MMR configures the mode of operation of Timer0.
Table 80. T0CON MMR Bit Designations
Bit Name Description
31:24 T0PVAL 8-bit postscaler.
By writing to these eight bits, a value is written to the postscaler. Writing 0 is interpreted as a 1.
By reading these eight bits, the current value of the counter is read.
23 T0PEN Timer0 enable postscaler.
Set to enable the Timer0 postscaler. If enabled, interrupts are generated after T0CON[31:24] periods
as defined by T0LD.
Cleared to disable the Timer0 postscaler.
22:20 Reserved. These bits are reserved and should be written as 0 by user code.
19 T0PCF Postscaler compare flag; read only. Set if the number of Timer0 overflows is equal to the number written
to the postscaler.
18 T0SRCI Timer0 interrupt source.
Set to select interrupt generation from the postscaler counter.
Cleared to select interrupt generation directly from Timer0.
17 T0CAPEN Event enable bit.
Set by user to enable time capture of an event.
Cleared by user to disable time capture of an event.
16:12 T0CAPSEL Event Select Bits[17:0]. The events are described in Table 78.
11
Reserved bit.
10:9 T0CLKSEL Clock select.
[00] = 32.768 kHz.
[01] = 10.24 MHz/CD.
[10] = 10.24 MHz.
[11] = P1.0.
8 T0DIR Count up.
Set by user for Timer0 to count up.
Cleared by user for Timer0 to count down (default).
7 T0EN Timer0 enable bit.
Set by user to enable Timer0.
Cleared by user to disable Timer0 (default).
6 T0MOD Timer0 mode.
Set by user to operate in periodic mode.
Cleared by user to operate in free running mode (default).
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 70 of 108
Bit Name Description
5:4 T0FORMAT Format.
[00] = binary (default).
[01] = reserved.
[10] = hours:minutes:seconds:hundredths (23 hours to 0 hours).
[11] = hours:minutes:seconds:hundredths (255 hours to 0 hours).
3:0 T0SCALE Prescaler.
[0000] = source clock/1 (default).
[0100] = source clock/16.
[1000] = source clock/256.
[1111] = source clock/32,768. Note that all other values are undefined.
TIMER1 OR WAKE-UP TIMER
Timer1 is a 32-bit wake-up timer, count down or count up, with
a programmable prescaler. The prescaler is clocked directly from
one of four clock sources, namely, the core clock (which is the
default selection), external 32.768 kHz watch crystal, or the
32.768 kHz oscillator. The selected clock source can be scaled
by a factor of 1, 16, 256, or 32,768. The wake-up timer
continues to run when the core clock is disabled. This gives a
minimum resolution of 97.66 ns when operating at CD zero, the
core is operating at 10.24 MHz, and with a prescaler of 1
(ignoring the external GPIOs).
The counter can be formatted as a plain 32-bit value or as
hours:minutes:seconds:hundredths.
Timer1 reloads the value from T1LD either when Timer1
overflows or immediately when T1LD is written.
The Timer1 interface consists of four MMRS.
T1LD and T1VAL are 32-bit registers and hold 32-bit,
unsigned integers. T1VAL is read only.
T1CLRI is an 8-bit register. Writing any value to this
register clears the Timer1 interrupt.
T1CON is the configuration MMR, described in Table 81.
Timer1 Load Registers
Name: T1LD
Address: 0xFFFF0340
Default value: 0x00000000
Access: Read and write
Function: T1LD is a 32-bit register that holds the 32-bit
value that is loaded into the counter.
Timer1 Clear Register
Name: T1CLRI
Address: 0xFFFF034C
Access: Write only
Function: This 8-bit, write-only MMR is written (with
any value) by user code to clear the interrupt.
Timer1 Value Register
Name: T 1 VA L
Address: 0xFFFF0344
Default value: 0xFFFFFFFF
Access: Read only
Function: T1VAL is a 32-bit register that holds the
current value of Timer1.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 71 of 108
PRESCALER
1, 16, 256, O R 32,768 TIME R1 IRQ
32-BIT
UP/DOW N COUNT E R
32.768kHz OSCIL LATOR
CORE CLO CK
FREQUENCY/CD
CORE
CLOCK
EXT E RNAL 32. 768kHz
WAT CH CRY S TAL
32-BIT L OAD
TIMER1
VALUE
07079-018
Figure 24. Timer1 Block Diagram
Timer1 Control Register
Name: T1CON
Address: 0xFFFF0348
Default value: 0x0000
Access: Read and write
Function: This 16-bit MMR configures the mode of operation of Timer1.
Table 81. T1CON MMR Bit Designations
Bit Name Description
15:11 Reserved.
10: 9 T1CLKSEL Clock source select.
[00] = 32.768 kHz oscillator.
[01] = 10.24 MHz/CD.
[10] = XTALI.
[11] = 10.24 MHz.
8 T1DIR Count up.
Set by user for Timer1 to count up.
Cleared by user for Timer1 to count down (default).
7 T1EN Timer1 enable bit.
Set by user to enable Timer1.
Cleared by user to disable Timer1 (default).
6 T1MOD Timer1 mode.
Set by user to operate in periodic mode.
Cleared by user to operate in free running mode (default).
5:4 T1FORMAT Format.
[00] = binary (default).
[01] = reserved.
[10] = hours:minutes:seconds:hundredths (23 hours to 0 hours). This is only valid with a 32 kHz clock.
[11] = hours:minutes:seconds:hundredths (255 hours to 0 hours). This is only valid with a 32 kHz clock.
3:0 T1SCALE Prescaler.
[0000] = source clock/1 (default).
[0100] = source clock/16.
[1000] = source clock/256. This setting should be used in conjunction with Timer1 in the format
hours:minutes:seconds:hundredths. See Format 10 and Format 11 listed with Bits[5:4] in this table (Table 81).
[1111] = source clock/32,768.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 72 of 108
TIMER2 OR WATCHDOG TIMER
Timer2 has two modes of operation, normal mode and
watchdog mode. The watchdog timer is used to recover
from an illegal software state. When enabled, it requires
periodic servicing to prevent it from forcing a reset of the
processor.
Timer2 reloads the value from T2LD either when Timer2
overflows or immediately when T2CLRI is written.
Normal Mode
Timer2 in normal mode is identical to Timer0 in the 16-bit
mode of operation, except for the clock source. The clock
source is the low power, 32.768 kHz oscillator scalable by a
factor of 1, 16, or 256.
Watchdog Mode
Watchdog mode is entered by setting T2CON[Bit 5]. Timer2
decrements from the timeout value present in the T2LD register
until zero. The maximum timeout is 512 seconds, using a
maximum prescaler/256 and full scale in T2LD.
User software should not configure a timeout period of less
than 30 ms. This is to avoid any conflict with Flash/EE memory
page erase cycles that require 20 ms to complete a single page
erase cycle and kernel execution.
If T2VAL reaches 0, a reset or an interrupt occurs, depending
on T2CON[1]. To avoid a reset or an interrupt event, any value
must be written to T2CLRI before T2VAL reaches zero. This
reloads the counter with T2LD and begins a new timeout period.
When watchdog mode is entered, T2LD and T2CON are
write protected. These two registers cannot be modified until
a power-on reset event resets the watchdog timer. After any
other reset event, the watchdog timer continues to count. To
avoid an infinite loop of watchdog resets, configure the
watchdog timer in the initial lines of user code. User software
should configure a minimum timeout period of 30 ms only.
Timer2 halts automatically during JTAG debug access and only
recommences counting after JTAG relinquishes control of the
ARM7 core. By default, Timer2 continues to count during
power-down. To disable this, set Bit 0 in T2CON. It is
recommended that the default value be used, that is, that the
watchdog timer continues to count during power-down.
Timer2 Interface
The Timer2 interface consists of four MMRs.
T2CON is the configuration MMR, described in (Table 82).
T2LD and T2VAL are 16-bit registers (Bit 0 to Bit 15) and
hold 16-bit, unsigned integers. T2VAL is read only.
T2CLRI is an 8-bit register. Writing any value to this
register clears the Timer2 interrupt in normal mode or
resets a new timeout period in watchdog mode.
Timer2 Load Register
Name: T2LD
Address: 0xFFFF0360
Default value: 0x3BF8
Access: Read and write
Function: This 16-bit MMR holds the Timer2
reload value.
Timer2 Clear Register
Name: T2CLRI
Address: 0xFFFF036C
Access: Write only
Function: This 8-bit, write-only MMR is written (with
any value) by user code to refresh (reload)
Timer2 in watchdog mode to prevent a
watchdog timer reset event.
Timer2 Value Register
Name: T 2 VA L
Address: 0xFFFF0364
Default value: 0x3BF8
Access: Read only
Function: This 16-bit, read-only MMR holds the
current Timer2 count value.
PRESCALER
1, 16, 256 TI M E R2 IRQ
WAT CHDOG RE S E T
16-BIT
UP/DOW N COUNT E R
32.768kHz
16-BIT L OAD
TIMER2
VALUE
07079-019
Figure 25. Timer2 Block Diagram
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 73 of 108
Timer2 Control Register
Name: T2CON
Address: 0xFFFF0368
Default value: 0x0000
Access: Read and write
Function: This 16-bit MMR configures the mode of operation of Timer2, as described in detail in Table 82.
Table 82. T2CON MMR Bit Designations
Bit Name Description
15:9 Reserved. These bits are reserved and should be written as 0 by user code.
8 T2DIR Count up/count down enable.
Set by user code to configure Timer2 to count up.
Cleared by user code to configure Timer2 to count down.
7 T2EN Timer2 enable.
Set by user code to enable Timer2.
Cleared by user code to disable Timer2.
6 T2MOD Timer2 operating mode.
Set by user code to configure Timer2 to operate in periodic mode.
Cleared by user to configure Timer2 to operate in free running mode.
5 WDOGMDEN Watchdog timer mode enable.
Set by user code to enable watchdog mode.
Cleared by user code to disable watchdog mode.
4 Reserved. This bit is reserved and should be written as 0 by user code.
3:2 T2SCALE Timer2 clock (32.768 kHz) prescaler.
00 = 32.768 kHz (default).
01 = source clock/16.
10 = source clock/256.
11 =
reserved.
1 WDOGENI Watchdog timer IRQ enable.
Set by user code to produce an IRQ instead of a reset when the watchdog reaches 0.
Cleared by user code to disable the IRQ option.
0 T2PDOFF Stop Timer2 when power-down is enabled.
Set by user code to stop Timer2 when the peripherals are powered down using Bit 4 in the POWCON0 MMR.
Cleared by user code to enable Timer2 when the peripherals are powered down using Bit 4 in the
POWCON0 MMR.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 74 of 108
TIMER3
Timer3 is a general-purpose, 16-bit, count up/count down
timer with a programmable prescaler. Timer3 can be clocked
from the core clock or the low power 32.768 kHz oscillator with
a prescaler of 1, 16, 256, or 32,768.
Timer3 has a capture register (T3CAP) that can be triggered by
a selected IRQ source initial assertion. Once triggered, the
current timer value is copied to T3CAP, and the timer continues
to run. This feature can be used to determine the assertion of an
event with increased accuracy.
The Timer3 interface consists of five MMRs.
T3LD, T3VAL, and T3CAP are 16-bit registers and hold
16-bit, unsigned integers. T3VAL and T3CAP are read
only.
T3CLRI is an 8-bit register. Writing any value to this
register clears the interrupt.
T3CON is the configuration MMR, described in Table 83.
Timer3 Load Registers
Name: T3LD
Address: 0xFFFF0380
Default value: 0x0000
Access: Read and write
Function: T3LD is a 16-bit register that holds the
16-bit value that is loaded into the counter.
Timer3 Clear Register
Name: T3CLRI
Address: 0xFFFF038C
Access: Write only
Function: This 8-bit, write-only MMR is written (with
any value) by user code to clear the
interrupt.
Timer3 Value Register
Name: T 3 VA L
Address: 0xFFFF0384
Default value: 0xFFFF
Access: Read only
Function: T3VAL is a 16-bit register that holds the
current value of Timer3.
Time3 Capture Register
Name: T3CAP
Address: 0xFFFF0390
Default value: 0x0000
Access: Read only
Function: This is a 16-bit register that holds the 16-bit
value captured by an enabled IRQ event.
Timer3 Control Register
Name: T3CON
Address: 0xFFFF0388
Default value: 0x00000000
Access: Read and write
Function: This 32-bit MMR configures the mode of
operation of Timer3.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 75 of 108
Table 83. T3CON MMR Bit Designations
Bit Name Description
31:18 Reserved.
17 T3CAPEN Event enable bit.
Set by user to enable time capture of an event.
Cleared by user to disable time capture of an event.
16:12 T3CAPSEL Event select range, 0 to 17. The events are described in Table 78.
11 Reserved.
10:9 T3CLKSEL Clock select.
[00] = 32.768 kHz oscillator.
[01] = 10.24 MHz/CD.
[10] = 10.24 MHz.
[11] = reserved.
8 T3DIR Count up.
Set by user for Timer3 to count up.
Cleared by user for Timer3 to count down (default).
7 T3EN Timer3 enable bit.
Set by user to enable Timer3.
Cleared by user to disable Timer3 (default).
6 T3MOD Timer3 mode.
Set by user to operate in periodic mode.
Cleared by user to operate in free running mode (default mode).
5:4
Reserved.
3:0 T3SCALE Prescaler.
[0000] = source clock/1 (default).
[0100] = source clock/16.
[1000] = source clock/256.
[1111] = source clock/32,768.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 76 of 108
PULSE-WIDTH MODULATOR
PULSE-WIDTH MODULATOR GENERAL OVERVIEW
Each ADuC7060/ADuC7061 integrates a 6-channel pulse-
width modulator (PWM) interface. The PWM outputs can be
configured to drive an H-bridge or can be used as standard
PWM outputs. On power-up, the PWM outputs default to H-
bridge mode. This ensures that the motor is turned off by
default. In standard PWM mode, the outputs are arranged as
three pairs of PWM pins. Users have control over the period of
each pair of outputs and over the duty cycle of each individual
output.
Table 84. PWM MMRs
MMR Name Description
PWMCON PWM control.
PWM0COM0 Compare Register 0 for PWM Output 0 and
PWM Output 1.
PWM0COM1 Compare Register 1 for PWM Output 0 and
PWM Output 1.
PWM0COM2 Compare Register 2 for PWM Output 0 and
PWM Output 1.
PWM0LEN Frequency control for PWM Output 0 and PWM
Output 1.
PWM1COM0 Compare Register 0 for PWM Output 2 and
PWM Output 3.
PWM1COM1 Compare Register 1 for PWM Output 2 and
PWM Output 3.
PWM1COM2 Compare Register 2 for PWM Output 2 and
PWM Output 3.
PWM1LEN Frequency control for PWM Output 2 and PWM
Output 3.
PWM2COM0 Compare Register 0 for PWM Output 4 and
PWM Output 5.
PWM2COM1 Compare Register 1 for PWM Output 4 and
PWM Output 5.
PWM2COM2 Compare Register 2 for PWM Output 4 and
PWM Output 5.
PWM2LEN Frequency control for PWM Output 4 and PWM
Output 5.
PWMCLRI PWM interrupt clear.
In all modes, the PWMxCOMx MMRs control the point at
which the PWM outputs change state. An example of the first
pair of PWM outputs (PWM0 and PWM1) is shown in Figure 26.
HIG H S IDE
(PWM0)
LOW SIDE
(PWM1)
PWM0COM2
PWM0COM1
PWM0COM0
PWM0LEN
0
7079-020
Figure 26. PWM Timing
The PWM clock is selectable via PWMCON with one of the
following values: UCLK divided by 2, 4, 8, 16, 32, 64, 128, or
256. The length of a PWM period is defined by PWMxLEN.
The PWM waveforms are set by the count value of the 16-bit
timer and the compare registers contents, as shown with the
PWM0 and PWM1 waveforms in Figure 26.
The low-side waveform, PWM1, goes high when the timer
count reaches PWM0LEN, and it goes low when the timer
count reaches the value held in PWM0COM2 or when the
high-side waveform (PWM0) goes low.
The high-side waveform, PWM0, goes high when the timer
count reaches the value held in PWM0COM0, and it goes low
when the timer count reaches the value held in PWM0COM1.
PWMCON Control Register
Name: PWMCON
Address: 0xFFFF0F80
Default value: 0x0012
Access: Read and write
Function: This is a 16-bit MMR that configures the
PWM outputs.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 77 of 108
Table 85. PWMCON MMR Bit Designations
Bit Name Description
15 Reserved This bit is reserved. Do not write to this bit.
14 Sync Enables PWM synchronization.
Set to 1 by user so that all PWM counters are reset on the next clock edge after the detection of a high-to-low
transition on the P1.2/SYNC pin.
Cleared by user to ignore transitions on the P1.2/SYNC pin.
13 PWM5INV Set to 1 by user to invert PWM5.
Cleared by user to use PWM5 in normal mode.
12 PWM3INV Set to 1 by user to invert PWM3.
Cleared by user to use PWM3 in normal mode.
11
PWM1INV
Set to 1 by user to invert PWM1.
Cleared by user to use PWM1 in normal mode.
10 PWMTRIP Set to 1 by user to enable PWM trip interrupt. When the PWM trip input (Pin P1.3/TRIP) is low, the PWMEN bit is
cleared and an interrupt is generated.
Cleared by user to disable the PWMTRIP interrupt.
9 ENA If HOFF = 0 and HMODE = 1. Note that, if not in H-bridge mode, this bit has no effect.
Set to 1 by user to enable PWM outputs.
Cleared by user to disable PWM outputs.
If HOFF = 1 and HMODE = 1, see Table 86.
8:6 PWMCP[2:0] PWM clock prescaler bits. Sets the UCLK divider.
[000] = UCLK/2.
[001] = UCLK/4.
[010] = UCLK/8.
[011] = UCLK/16.
[100] = UCLK/32.
[101] = UCLK/64.
[110] = UCLK/128.
[111] = UCLK/256.
5 POINV Set to 1 by user to invert all PWM outputs.
Cleared by user to use PWM outputs as normal.
4 HOFF High side off.
Set to 1 by user to force PWM0 and PWM2 outputs high. This also forces PWM1 and PWM3 low.
Cleared by user to use the PWM outputs as normal.
3 LCOMP Load compare registers.
Set to 1 by user to load the internal compare registers with the values in PWMxCOMx on the next transition of the
PWM timer from 0x00 to 0x01.
Cleared by user to use the values previously stored in the internal compare registers.
2 DIR Direction control.
Set to 1 by user to enable PWM0 and PWM1 as the output signals while PWM2 and PWM3 are held low.
Cleared by user to enable PWM2 and PWM3 as the output signals while PWM0 and PWM1 are held low.
1 HMODE Enables H-bridge mode.1
Set to 1 by user to enable H-bridge mode and Bit 1 to Bit 5 of PWMCON.
Cleared by user to operate the PWMs in standard mode.
0 PWMEN Set to 1 by user to enable all PWM outputs.
Cleared by user to disable all PWM outputs.
1 In H-bridge mode, HMODE = 1. See Table 86 to determine the PWM outputs.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 78 of 108
On power-up, PWMCON defaults to 0x0012 (HOFF = 1 and
HMODE = 1). All GPIO pins associated with the PWM are
configured in PWM mode by default (seeTable 86). Clear the
PWM trip interrupt by writing any value to the PWMCLRI
MMR. Note that when using the PWM trip interrupt, clear the
PWM interrupt before exiting the ISR. This prevents generation
of multiple interrupts.
Table 86. PWM Output Selection
PWMCON MMR1 PWM Outputs2
ENA HOFF POINV DIR PWM0 PWM1 PWM2 PWM3
0 0 X X 1 1 1 1
X 1 X X 1 0 1 0
1 0 0 0 0 0 HS1 LS1
1 0 0 1 HS1 LS1 0 0
1 0 1 0 HS1 LS1 1 1
1 0 1 1 1 1 HS1 LS1
1 X is don’t care.
2 HS = high side, LS = low side.
Table 87. Compare Registers
Name Address Default Value Access
PWM0COM0 0xFFFF0F84 0x0000 R/W
PWM0COM1 0xFFFF0F88 0x0000 R/W
PWM0COM2 0xFFFF0F8C 0x0000 R/W
PWM1COM0 0xFFFF0F94 0x0000 R/W
PWM1COM1 0xFFFF0F98 0x0000 R/W
PWM1COM2 0xFFFF0F9C 0x0000 R/W
PWM2COM0 0xFFFF0FA4 0x0000 R/W
PWM2COM1
0xFFFF0FA8
0x0000
R/W
PWM2COM2 0xFFFF0FAC 0x0000 R/W
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 79 of 108
PWM0COM0 Compare Register
Name: PWM0COM0
Address: 0xFFFF0F84
Default value: 0x0000
Access: Read and write
Function: PWM0 output pin goes high when the PWM
timer reaches the count value stored in this
register.
PWM0COM1 Compare Register
Name: PWM0COM1
Address: 0xFFFF0F88
Default value: 0x0000
Access: Read and write
Function: PWM0 output pin goes low when the PWM
timer reaches the count value stored in this
register.
PWM0COM2 Compare Register
Name: PWM0COM2
Address: 0xFFFF0F8C
Default value: 0x0000
Access: Read and write
Function: PWM1 output pin goes low when the PWM
timer reaches the count value stored in this
register.
PWM0LEN Register
Name: PWM0LEN
Address: 0xFFFF0F90
Default value: 0x0000
Access: Read and write
Function: PWM1 output pin goes high when the PWM
timer reaches the value stored in this register.
PWM1COM0 Compare Register
Name: PWM1COM0
Address: 0xFFFF0F94
Default value: 0x0000
Access: Read and write
Function: PWM2 output pin goes high when the PWM
timer reaches the count value stored in this
register.
PWM1COM1 Compare Register
Name: PWM1COM1
Address: 0xFFFF0F98
Default value: 0x0000
Access: Read and write
Function: PWM2 output pin goes low when the PWM
timer reaches the count value stored in this
register.
PWM1COM2 Compare Register
Name: PWM1COM2
Address: 0xFFFF0F9C
Default value: 0x0000
Access: Read and write
Function: PWM3 output pin goes low when the PWM
timer reaches the count value stored in this
register.
PWM1LEN Register
Name: PWM1LEN
Address: 0xFFFF0FA0
Default value: 0x0000
Access: Read and write
Function: PWM3 output pin goes high when the PWM
timer reaches the value stored in this register.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 80 of 108
PWM2COM0 Compare Register
Name: PWM2COM0
Address: 0xFFFF0FA4
Default value: 0x0000
Access: Read and write
Function: PWM4 output pin goes high when the PWM
timer reaches the count value stored in this
register.
PWM2COM1 Compare Register
Name: PWM2COM1
Address: 0xFFFF0FA8
Default value: 0x0000
Access: Read and write
Function: PWM4 output pin goes low when the PWM
timer reaches the count value stored in this
register.
PWM2COM2 Compare Register
Name: PWM2COM2
Address: 0xFFFF0FAC
Default value: 0x0000
Access: Read and write
Function: PWM5 output pin goes low when the PWM
timer reaches the count value stored in this
register.
PWM2LEN Register
Name: PWM2LEN
Address: 0xFFFF0FB0
Default value: 0x0000
Access: Read and write
Function: PWM5 output pin goes high when the PWM
timer reaches the value stored in this register.
PWMCLRI Register
Name: PWMCLRI
Address: 0xFFFF0FB8
Default value: 0x0000
Access: Write only
Function: Write any value to this register to clear a
PWM interrupt source. This register must be
written to before exiting a PWM interrupt
service routine; otherwise, multiple interrupts
occur.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 81 of 108
UART SERIAL INTERFACE
Each ADuC7060/ADuC7061 features a 16450-compatible
UART. The UART is a full-duplex, universal, asynchronous
receiver/transmitter. A UART performs serial-to-parallel
conversion on data characters received from a peripheral device
and parallel-to-serial conversion on data characters received from
the ARM7TDMI. The UART features a fractional divider that
facilitates high accuracy baud rate generation and a network
addressable mode. The UART functionality is available on the
P1.0/IRQ1/SIN/T0 and P1.1/SOUT pins of the ADuC7060/
ADuC7061.
The serial communication adopts an asynchronous protocol
that supports various word lengths, stop bits, and parity genera-
tion options selectable in the configuration register.
BAUD RATE GENERATION
The ADuC7060/ADuC7061 features two methods of generating
the UART baud rate: normal 450 UART baud rate generation
and ADuC7060/ADuC7061 fractional divider.
Normal 450 UART Baud Rate Generation
The baud rate is a divided version of the core clock using the
value in COMDIV0 and COMDIV1 MMRs (16-bit value,
divisor latch (DL)). The standard baud rate generator formula is
DL
RateBaud ××
=216
MHz24.10
(1)
Table 88 lists common baud rate values.
Table 88. Baud Rate Using the Standard Baud Rate Generator
Baud Rate DL Actual Baud Rate % Error
9600 0x21 9696 1.01%
19,200 0x11 18,824 1.96%
115,200 0x3 106,667 7.41%
ADuC7060/ADuC7061 Fractional Divider
The fractional divider combined with the normal baud rate
generator allows the generation of accurate high speed baud rates.
/2
/(M + N/2048) /16DL UART
CORE
CLOCK
FBEN
07079-021
Figure 27. Fractional Divider Baud Rate Generation
Calculation of the baud rate using a fractional divider is as
follows:
)
2048
(216
MHz24.10
N
MDL
RateBaud
+×××
=
(2)
216
MHz24.10
2048 ×××
=+ DLRateBaud
N
M
Table 89 lists common baud rate values.
Table 89. Baud Rate Using the Fractional Baud Rate Generator
Baud Rate DL M N Actual Baud Rate % Error
9600 0x21 1 21 9598.55 0.015%
19,200 0x10 1 85 19,203 0.015%
115,200
0x2
1
796
115,218
0.015%
UART REGISTER DEFINITIONS
The UART interface consists of the following 11 registers:
COMTX: 8-bit transmit register
COMRX: 8-bit receive register
COMDIV0: divisor latch (low byte)
COMDIV1: divisor latch (high byte)
COMCON0: line control register
COMCON1: line control register
COMSTA0: line status register
COMSTA1: line status register
COMIEN0: interrupt enable register
COMIID0: interrupt identification register
COMDIV2: 16-bit fractional baud divide register
COMTX, COMRX, and COMDIV0 share the same address
location. COMTX and COMRX can be accessed when Bit 7 in
the COMCON0 register is cleared. COMDIV0 or COMDIV1
can be accessed when Bit 7 of COMCON0 or COMCON1,
respectively, is set.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 82 of 108
UART Transmit Register
Write to this 8-bit register (COMTX) to transmit data using
the UART.
COMTX Register
Name: COMTX
Address: 0xFFFF0700
Access: Write only
UART Receive Register
This 8-bit register (COMRX) is read to receive data transmitted
using the UART.
COMRX Register
Name: COMRX
Address: 0xFFFF0700
Default value: 0x00
Access: Read only
UART Divisor Latch Register 0
This 8-bit register (COMDIV0) contains the least significant
byte of the divisor latch that controls the baud rate at which the
UART operates.
COMDIV0 Register
Name: COMDIV0
Address: 0xFFFF0700
Default value: 0x00
Access: Read and write
UART Divisor Latch Register 1
This 8-bit register contains the most significant byte of the
divisor latch that controls the baud rate at which the UART
operates.
COMDIV1 Register
Name: COMDIV1
Address: 0xFFFF0704
Default value: 0x00
Access: Read and write
UART Control Register 0
This 8-bit register (COMCON0) controls the operation of the
UART in conjunction with COMCON1.
COMCON0 Register
Name: COMCON0
Address: 0xFFFF070C
Default value: 0x00
Access: Read and write
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 83 of 108
Table 90. COMCON0 MMR Bit Designations
Bit Name Description
7 DLAB Divisor latch access.
Set by user to enable access to the COMDIV0 and COMDIV1 registers.
Cleared by user to disable access to COMDIV0 and COMDIV1 and enable access to COMRX,
COMTX, and COMIEN0.
6 BRK Set break.
Set by user to force transmit to 0.
Cleared to operate in normal mode.
5 SP Stick parity. Set by user to force parity to defined values.
1 if EPS = 1 and PEN = 1.
0 if EPS = 0 and PEN = 1.
4 EPS Even parity select bit.
Set for even parity.
Cleared for odd parity.
3 PEN Parity enable bit.
Set by user to transmit and check the parity bit.
Cleared by user for no parity transmission or checking.
2 Stop Stop bit.
Set by user to transmit 1.5 stop bits if the word length is 5 bits, or 2 stop bits if the word length is 6
bits, 7 bits, or 8 bi
ts. The receiver checks the first stop bit only, regardless of the number of stop bits
selected.
Cleared by user to generate one stop bit in the transmitted data.
1:0 WLS Word length select.
[00] = 5 bits.
[01] = 6 bits.
[10] = 7 bits.
[11] = 8 bits.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 84 of 108
UART Control Register 1
This 8-bit register controls the operation of the UART in
conjunction with COMCON0.
COMCON1 Register
Name: COMCON1
Address: 0xFFFF0710
Default value: 0x00
Access: Read and write
Table 91. COMCON1 MMR Bit Designations
Bit Name Description
7:5 Reserved bits. Not used.
4
LOOPBACK
loopback mode. In loopback mode,
the transmit pin is forced high.
3:2
1 RTS Request to send.
Set by user to force the RTS output to 0.
Cleared by user to force the RTS
output to 1.
0 DTR Data terminal ready.
Set by user to force the DTR output to 0.
Cleared by user to force the DTR
output to 1.
UART Status Register 0
COMSTA0 Register
Name: COMSTA0
Address: 0xFFFF0714
Default value: 0x60
Access: Read only
Function: This 8-bit read-only register reflects the
current status on the UART.
Table 92. COMSTA0 MMR Bit Designations
Bit Name Description
7 Reserved.
6
TEMT
COMTX and shift register empty status bit.
Set automatically if COMTX and the shift
register are empty. This bit indicates that
the data has been transmitted, that is, no
more data is present in the shift register.
Cleared automatically when writing to
COMTX.
5 THRE COMTX empty status bit.
Set automatically if COMTX is empty.
COMTX can be written as soon as this bit
is set; the previous data might not have
been transmitted yet and can still be
present in the shift register.
Cleared automatically when writing to
COMTX.
4 BI Break indicator.
Set when P1.0/IRQ1/SIN/T0 pin is held
low for more than the maximum word
length.
Cleared automatically.
3 FE Framing error.
Set when the stop bit is invalid.
Cleared automatically.
2 PE Parity error.
Set when a parity error occurs.
Cleared automatically.
1 OE Overrun error.
Set automatically if data is overwritten
before being read.
Cleared automatically.
0 DR Data ready.
Set automatically when COMRX is full.
Cleared by reading COMRX.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 85 of 108
UART Status Register 1
COMSTA1 Register
Name: COMSTA1
Address: 0xFFFF0718
Default value: 0x00
Access: Read only
Function: COMSTA1 is a modem status register.
Table 93. COMSTA1 MMR Bit Designations
Bit Name Description
7:5 Reserved. Not used.
4 CTS Clear to send.
3:1 Reserved. Not used.
0 DCTS Delta CTS.
Set automatically if CTS changed state since
COMSTA1 was last read.
Cleared automatically by reading COMSTA1.
UART Interrupt Enable Register 0
COMIEN0 Register
Name: COMIEN0
Address: 0xFFFF0704
Default value: 0x00
Access: Read and write
Function: This 8-bit register enables and disables the
individual UART interrupt sources.
Table 94. COMIEN0 MMR Bit Designations
Bit Name Description
7:4 Reserved. Not used.
3 EDSSI Modem status interrupt enable bit.
Set by user to enable generation of an
interrupt if COMSTA1[4] or COMSTA1[0] are set.
Cleared by user.
2 ELSI Receive status interrupt enable bit.
Set by user to enable generation of an
interrupt if any of the COMSTA0[3:1] register
bits are set.
Cleared by user.
1 ETBEI Enable transmit buffer empty interrupt.
Set by user to enable an interrupt when the
buffer is empty during a transmission; that is,
when COMSTA0[5] is set.
Cleared by user.
0 ERBFI Enable receive buffer full interrupt.
Set by user to enable an interrupt when the
buffer is full during a reception.
Cleared by user.
UART Interrupt Identification Register 0
COMIID0 Register
Name: COMIID0
Address: 0xFFFF0708
Default value: 0x01
Access: Read only
Function: This 8-bit register reflects the source of the
UART interrupt.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 86 of 108
Table 95. COMIID0 MMR Bit Designations
Status
Bits[2:1] Bit 0 Priority Definition
Clearing
Operation
00 1 No interrupt
11 0 1 Receive line
status
interrupt
Read
COMSTA0
10 0 2 Receive
buffer full
interrupt
Read COMRX
01 0 3 Transmit
buffer empty
interrupt
Write data to
COMTX or
read COMIID0
00 0 4 Modem
status
interrupt
Read
COMSTA1
register
UART Fractional Divider Register
This 16-bit register (COMDIV2) controls the operation of the
fractional divider for the ADuC7060/ADuC7061.
COMDIV2 Register
Name: COMDIV2
Address: 0xFFFF072C
Default value: 0x0000
Access: Read and write
Table 96. COMDIV2 MMR Bit Designations
Bit Name Description
15 FBEN Fractional baud rate generator enable bit.
Set by user to enable the fractional baud
rate generator.
Cleared by user to generate the baud rate
using the standard 450 UART baud rate
generator.
14:13
Reserved.
12:11 FBM[1:0] M. If FBM = 0, M = 4. See Equation 2 for the
calculation of the baud rate using a
fractional divider and Table 88 for common
baud rate values.
10:0 FBN[10:0] N. See Equation 2 for the calculation of the
baud rate using a fractional divider and
Table 88 for common baud rate values.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 87 of 108
I2C
Each ADuC7060/ADuC7061 incorporates an I2C peripheral
that can be configured as a fully I2C-compatible I2C bus master
device or as a fully I2C bus-compatible slave device. The two
pins used for data transfer, SDA and SCL, are configured in a
wire-AND’e d format that allows arbitration in a multimaster
system. These pins require external pull-up resistors. Typical
pull-up resistor values are between 4.7 kΩ and 10 kΩ.
Users program the I2C bus peripheral (addressed in the I2C bus
system). This ID can be modified any time that a transfer is not
in progress. The user can configure the interface to respond to
four slave addresses.
The transfer sequence of an I2C system consists of a master
device initiating a transfer by generating a start condition while
the bus is idle. The master transmits the slave device address
and the direction of the data transfer (read or write) during the
initial address transfer. If the master does not lose arbitration
and the slave acknowledges, the data transfer is initiated. This
continues until the master issues a stop condition and the bus
becomes idle.
The I2C peripheral can be configured only as a master or a slave
at any given time. The same I2C channel cannot simultaneously
support master and slave modes.
The I2C interface on the ADuC7060/ADuC7061 includes the
following features:
Support for repeated start conditions. In master mode, the
ADuC7060/ADuC7061 can be programmed to generate a
repeated start. In slave mode, the ADuC7060/ADuC7061
recognizes repeated start conditions.
In master and slave modes, the part recognizes both 7-bit
and 10-bit bus addresses.
In I2C master mode, the ADuC7060/ADuC7061 supports
continuous reads from a single slave up to 512 bytes in a
single transfer sequence.
Clock stretching can be enabled by other devices on
the bus without causing any issues with the ADuC7060/
ADuC7061. However, the ADuC7060/ADuC7061 cannot
enable clock stretching.
In slave mode, the ADuC7060/ADuC7061 can be
programmed to return a no acknowledge (NACK). This
allows the validation of checksum bytes at the end of I2C
transfers.
Bus arbitration in master mode is supported.
Internal and external loopback modes are supported for
I2C hardware testing.
The transmit and receive circuits in both master and slave
modes contain 2-byte FIFOs. Status bits are available to the
user to control these FIFOs.
CONFIGURING EXTERNAL PINS FOR I2C
FUNCTIONALITY
The I2C functions of the P0.1/SCLK/SCL and P0.3/MOSI/SDA
pins of the ADuC7060/ADuC7061 device are P0.1 and P0.3.
The function of P0.1 is the I2C clock signal (SCL) and the
function of P0.3 is the I2C data signal (SDA). To configure P0.1
and P0.3 for I2C mode, Bit 4 and Bit 12 of the GP0CON0
register must be set to 1. Bit 1 of the GP0CON1 register must
also be set to 1 to enable I2C mode.
Note that, to write to GP0CON1, the GP0KEY1 register must
be set to 0x7 immediately before writing to GP0CON1. Also,
the GP0KEY2 register must be set to 0x13 immediately after
writing to GP0CON1. The following code example shows this
in detail:
GP0CON0 = BIT4 + BIT12; // Select SPI/I2C alternative function for P0.1 and P0.3
GP0KEY1 = 0x7; // Write to GP0KEY1
GP0CON1 = BIT1; // Select I2C functionality for P0.1 and P0.3
GP0KEY2 = 0x13; // Write to GP0KEY2
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 88 of 108
SERIAL CLOCK GENERATION
The I2C master in the system generates the serial clock for a
transfer. The master channel can be configured to operate in
fast mode (400 kHz) or standard mode (100 kHz).
The bit rate is defined in the I2CDIV MMR as follows:
)
(2
)
2( DIVLDIVH +
++
=UCLK
CLOCKSERIAL
f
f
where:
fUCLK is the clock before the clock divider.
DIVH is the high period of the clock.
DIVL is the low period of the clock.
Thus, for 100 kHz operation
DIVH = DIVL = 0x33
and for 400 kHz
DIVH = 0x0A, DIVL = 0x0F
The I2CDIV register corresponds to DIVH:DIVL.
I2C BUS ADDRESSES
Slave Mode
In slave mode, the I2CID0, I2CID1, I2CID2, and I2CID3
registers contain the device IDs. The device compares the four
I2CIDx registers to the address byte received from the bus
master. To be correctly addressed, the 7 MSBs of any ID register
must be identical to the 7 MSBs of the first received address
byte. The least significant bit of the ID registers (the transfer
direction bit) is ignored in the process of address recognition.
The ADuC7060/ADuC7061 also supports 10-bit addressing
mode. When Bit 1 of I2CSCON (ADR10EN bit) is set to 1, then
one 10-bit address is supported in slave mode and is stored in
the I2CID0 and I2CID1 registers. The 10-bit address is derived
as follows:
I2CID0[0] is the read/write bit and is not part of the I2C
address.
I2CID0[7:1] = Address Bits[6:0].
I2CID1[2:0] = Address Bits[9:7].
I2CID1[7:3] must be set to 11110b.
Master Mode
In master mode, the I2CADR0 register is programmed with the
I2C address of the device.
In 7-bit address mode, I2CADR0[7:1] are set to the device
address. I2CADR0[0] is the read/write bit.
In 10-bit address mode, the 10-bit address is created as follows:
I2CADR0[7:3] must be set to 11110b.
I2CADR0[2:1] = Address Bits[9:8].
I2CADR1[7:0] = Address Bits[7:0].
I2CADR0[0] is the read/write bit.
I2C REGISTERS
The I2C peripheral interface consists overall of 19 MMRs. Nine
of these are master related only, nine are slave related only, and
one MMR is common to both master and slave modes.
I2C Master Registers
I2C Master Control, I2CMCON Register
Name: I2CMCON
Address: 0xFFFF0900
Default
value:
0x0000
Access: Read and write
Function: This 16-bit MMR configures the I2C peripheral in
master mode.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 89 of 108
Table 97. I2CMCON MMR Bit Designations
Bit Name Description
15:9 Reserved. These bits are reserved and should not be written to.
8
I2CMCENI
I
2
C transmission complete interrupt enable bit.
Set this bit to enable an interrupt on detecting a stop condition on the I2C bus.
Clear this interrupt source.
7 I2CNACKENI I2C no acknowledge (NACK) received interrupt enable bit.
Set this bit to enable interrupts when the I2C master receives a no acknowledge.
Clear this interrupt source.
6 I2CALENI I2C arbitration lost interrupt enable bit.
Set this bit to enable interrupts when the I2C master did not gain control of the I2C bus.
Clear this interrupt source.
5 I2CMTENI I2C transmit interrupt enable bit.
Set this bit to enable interrupts when the I2C master has transmitted a byte.
Clear this interrupt source.
4 I2CMRENI I2C receive interrupt enable bit.
Set this bit to enable interrupts when the I2C master receives data.
Cleared by user to disable interrupts when the I2C master is receiving data.
3 Reserved. A value of 0 should be written to this bit.
2 I2CILEN I2C internal loopback enable.
Set this bit to enable loopback test mode. In this mode, the SCL and SDA signals are connected internally to their
respective input signals.
Cleared by user to disable loopback mode.
1 I2CBD I2C master backoff disable bit.
Set this bit to allow the device to compete for control of the bus even if another device is currently driving a start
condition.
Clear this bit to back off until the I2C bus becomes free.
0 I2CMEN I2C master enable bit.
Set by user to enable the I2C master mode.
Cleared to disable the I2C master mode.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 90 of 108
I2C Master Status, I2CMSTA, Register
Name: I2CMSTA
Address: 0xFFFF0904
Default value: 0x0000
Access: Read only
Function: This 16-bit MMR is the I2C status register in master mode.
Table 98. I2CMSTA MMR Bit Designations
Bit
Name
Description
15:11 Reserved. These bits are reserved.
10 I2CBBUSY I2C bus busy status bit.
This bit is set to 1 when a start condition is detected on the I2C bus.
This bit is cleared when a stop condition is detected on the bus.
9 I2CMRxFO Master receive FIFO overflow.
This bit is set to 1 when a byte is written to the receive FIFO when it is already full.
This bit is cleared in all other conditions.
8 I2CMTC I2C transmission complete status bit.
This bit is set to 1 when a transmission is complete between the master and the slave with which it was
communicating. If the I2CMCENI bit in I2CMCON is set, an interrupt is generated when this bit is set.
Clear this interrupt source.
7 I2CMND I2C master no acknowledge data bit
This bit is set to 1 when a no acknowledge condition is received by the master in response to a data write transfer. If
the I2CNACKENI bit in I2CMCON is set, an interrupt is generated when this bit is set.
This bit is cleared in all other conditions.
6
I2CMBUSY
I
2
C master busy status bit.
Set to 1 when the master is busy processing a transaction.
Cleared if the master is ready or if another master device has control of the bus.
5
I2CAL
I
2
C arbitration lost status bit.
This bit is set to 1 when the I2C master does not gain control of the I2C bus. If the I2CALENI bit in I2CMCON is set, an
interrupt is generated when this bit is set.
This bit is cleared in all other conditions.
4 I2CMNA I2C master no acknowledge address bit.
This bit is set to 1 when a no acknowledge condition is received by the master in response to an address. If the
I2CNACKENI bit in I2CMCON is set, an interrupt is generated when this bit is set.
This bit is cleared in all other conditions.
3 I2CMRXQ I2C master receive request bit.
This bit is set to 1 when data enters the receive FIFO. If the I2CMRENI in I2CMCON is set, an interrupt is generated.
This bit is cleared in all other conditions.
2 I2CMTXQ I2C master transmit request bit.
This bit goes high if the transmit FIFO is empty or contains only one byte and the master has transmitted an address
+ write. If the I2CMTENI bit in I2CMCON is set, an interrupt is generated when this bit is set.
This bit is cleared in all other conditions.
1:0 I2CMTFSTA I2C master transmit FIFO status bits.
[00] = I
2
C master transmit FIFO empty.
[01] = 1 byte in master transmit FIFO.
[10] = 1 byte in master transmit FIFO.
[11] = I2C master transmit FIFO full.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 91 of 108
I2C Master Receive, I2CMRX, Register
Name: I2CMRX
Address: 0xFFFF0908
Default value: 0x00
Access: Read only
Function: This 8-bit MMR is the I2C master receive
register.
I2C Master Transmit, I2CMTX, Register
Name: I2CMTX
Address: 0xFFFF090C
Default value: 0x00
Access: Write only
Function: This 8-bit MMR is the I2C master transmit
register.
I2C Master Read Count, I2CMCNT0, Register
Name: I2CMCNT0
Address: 0xFFFF0910
Default value: 0x0000
Access: Read and write
Function: This 16-bit MMR holds the required number
of bytes when the master begins a read
sequence from a slave device.
Table 99. I2CMCNT0 MMR Bit Designations
Bit Name Description
15:9 Reserved.
8 I2CRECNT Set this bit if more than 256 bytes are
required from the slave.
Clear this bit when reading 256 bytes or
fewer.
7:0 I2CRCNT These eight bits hold the number of bytes
required during a slave read sequence,
minus 1. If only a single byte is required, set
these bits to 0.
I2C Master Current Read Count, I2CMCNT1, Register
Name: I2CMCNT1
Address: 0xFFFF0914
Default value: 0x00
Access: Read only
Function: This 8-bit MMR holds the number of bytes
received so far during a read sequence with a
slave device.
I2C Address 0, I2CADR0, Register
Name: I2CADR0
Address: 0xFFFF0918
Default value: 0x00
Access: Read and write
Function: This 8-bit MMR holds the 7-bit slave address
and the read/write bit when the master begins
communicating with a slave.
Table 100. I2CADR0 MMR in 7-Bit Address Mode
Bit Name Description
7:1 I2CADR These bits contain the 7-bit address of the
required slave device.
0 R/W Bit 0 is the read/write bit.
When this bit = 1, a read sequence is requested.
When this bit = 0, a write sequence is requested.
Table 101. I2CADR0 MMR in 10-Bit Address Mode
Bit Name Description
7:3 These bits must be set to [11110b] in 10-bit
address mode.
2:1
I2CMADR
These bits contain ADDR[9:8] in 10-bit
addressing mode.
0 R/W Read/write bit.
When this bit = 1, a read sequence is
requested.
When this bit = 0, a write sequence is
requested.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 92 of 108
I2C Address 1, I2CADR1, Register
Name: I2CADR1
Address: 0xFFFF091C
Default value: 0x00
Access: Read and write
Function: This 8-bit MMR is used in 10-bit addressing
mode only. This register contains the least
significant byte of the address.
Table 102. I2CADR1 MMR in 10-Bit Address Mode
Bit Name Description
7:0
I2CLADR
These bits contain ADDR[7:0] in 10-bit
addressing mode.
I2C Master Clock Control, I2CDIV, Register
Name: I2CDIV
Address: 0xFFFF0924
Default value: 0x1F1F
Access: Read and write
Function: This MMR controls the frequency of the I2C
clock generated by the master on to the SCL
pin. For further details, see the Serial Clock
Generation section.
Table 103. I2CDIV MMR Bit Designations
Bit Name Description
15:8 DIVH These bits control the duration of the high
period of SCL.
7:0 DIVL These bits control the duration of the low period
of SCL.
I2C Slave Registers
I2C Slave Control, I2CSCON, Register
Name: I2CSCON
Address: 0xFFFF0928
Default value: 0x0000
Access: Read and write
Function: This 16-bit MMR configures the I2C peripheral
in slave mode.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 93 of 108
Table 104. I2CSCON MMR Bit Designations
Bit Name Description
15:11 Reserved bits.
10 I2CSTXENI Slave transmit interrupt enable bit.
Set this bit to enable an interrupt after a slave transmits a byte.
Clear this interrupt source.
9 I2CSRXENI Slave receive interrupt enable bit.
Set this bit to enable an interrupt after the slave receives data.
Clear this interrupt source.
8 I2CSSENI I2C stop condition detected interrupt enable bit.
Set this bit to enable an interrupt on detecting a stop condition on the I2C bus.
Clear this interrupt source.
7 I2CNACKEN I2C no acknowledge enable bit.
Set this bit to no acknowledge the next byte in the transmission sequence.
Clear this bit to let the hardware control the acknowledge/no acknowledge sequence.
6 Reserved. A value of 0 should be written to this bit.
5 I2CSETEN I2C early transmit interrupt enable bit.
Setting this bit enables a transmit request interrupt just after the positive edge of SCL during the read bit
transmission.
Clear this bit to enable a transmit request interrupt just after the negative edge of SCL during the read bit
transmission.
4 I2CGCCLR I2C general call status and ID clear bit.
Writing a 1 to this bit clears the general call status and ID bits in the I2CSSTA register.
Clear this bit at all other times.
3 I2CHGCEN Hardware general call enable. When this bit and Bit 2 are set, and having received a general call (Address 0x00)
and a data byte, the device checks the contents of the I2CALT against the receive register. If the contents match,
the device has received a hardware general call. This is used if a device needs urgent attention from a master
device without knowing which master it needs to turn to. This is a “to whom it may concern call. The ADuC7060/
ADuC7061 watches for these addresses. The device that requires attention embeds its own address into the
message. All masters listen, and the one that can handle the device contacts its slave and acts appropriately. The
LSB of the I2CALT register should always be written to 1, as per the I2C January 2000 bus specification.
2 I2CGCEN General call enable bit. Set this bit to enable the slave device to acknowledge an I2C general call, Address 0x00
(write). The device then recognizes a data bit. If it receives a 0x06 (reset and write programmable part of the slave
address by hardware) as the data byte, the I2C interface resets as per the I2C January 2000 bus specification. This
command can be used to reset an entire I2C system. If it receives a 0x04 (write programmable part of the slave
address by hardware) as the data byte, the general call interrupt status bit sets on any general call. The user must
take corrective action by reprogramming the device address.
1 ADR10EN I2C 10-bit address mode.
Set to 1 to enable 10-bit address mode.
Clear to 0 to enable normal address mode.
0 I2CSEN I2C slave enable bit.
Set by user to enable I2C slave mode.
Clear to disable I
2
C slave mode.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 94 of 108
I2C Slave Status, I2CSSTA, Register
Name: I2CSSTA
Address: 0xFFFF092C
Default value: 0x0000
Access: Read and write
Function: This 16-bit MMR is the I2C status register in slave mode.
Table 105. I2CSSTA MMR Bit Designations
Bit
Name
Description
15 Reserved bit.
14 I2CSTA This bit is set to 1 if
a start condition followed by a matching address is detected, a start byte (0x01) is received, or
general calls are enabled and a general call code of 0x00 is received.
This bit is cleared on receiving a stop condition
13 I2CREPS This bit is set to 1 if a repeated start condition is detected.
This bit is cleared on receiving a stop condition. A read of the I2CSSTA register also clears this bit.
12:11 I2CID[1:0] I2C address matching register. These bits indicate which I2CIDx register matches the received address.
[00] = received address matches I2CID0.
[01] = received address matches I2CID1.
[10] = received address matches I2CID2.
[11] = received address matches I2CID3.
10 I2CSS I2C stop condition after start detected bit.
This bit is set to 1 when a stop condition is detected after a previous start and matching address. When the
I2CSSENI bit in I2CSCON is set, an interrupt is generated.
This bit is cleared by reading this register.
9:8
I2CGCID[1:0]
I
2
C general call ID bits.
[00] = no general call received.
[01] = general call reset and program address.
[10] = general program address.
[11] = general call matching alternative ID.
Note that these bits are not cleared by a general call reset command.
Clear these bits by writing a 1 to the I2CGCCLR bit in I2CSCON.
7 I2CGC I2C general call status bit.
This bit is set to 1 if the slave receives a general call command of any type. If the command received was a reset
command, then all registers return to their default states. If the command received was a hardware general call,
the receive FIFO holds the second byte of the command, and this can be compared with the I2CALT register.
Clear this bit by writing a 1 to the I2CGCCLR bit in I2CSCON.
6 I2CSBUSY I2C slave busy status bit.
Set to 1 when the slave receives a start condition.
Cleared by hardware if the received address does not match any of the I2CIDx registers, the slave device receives
a stop condition, or a repeated start address does not match any of the I2CIDx registers.
5 I2CSNA I2C slave no acknowledge data bit.
This bit is set to 1 when the slave responds to a bus address with a no acknowledge. This bit is asserted under the
following conditions: if a no acknowledge was returned because there was no data in the transmit FIFO or if the
I2CNACKEN bit was set in the I2CSCON register.
This bit is cleared in all other conditions.
4 I2CSRxFO Slave receive FIFO overflow.
This bit is set to 1 when a byte is written to the receive FIFO when it is already full.
This bit is cleared in all other conditions.
3 I2CSRXQ I2C slave receive request bit.
This bit is set to 1 when the receive FIFO of the slave is not empty. This bit causes an interrupt to occur if the
I2CSRXENI bit in I2CSCON is set.
The receive FIFO must be read or flushed to clear this bit.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 95 of 108
Bit Name Description
2 I2CSTXQ I2C slave transmit request bit.
This bit is set to 1 when the slave receives a matching address followed by a read. If the I2CSETEN bit in I2CSCON
is =0, this bit goes high just after the negative edge of SCL during the read bit transmission. If the I2CSETEN bit in
I2CSCON is =1, this bit goes high just after the positive edge of SCL during the read bit transmission. This bit
causes an interrupt to occur if the I2CSTXENI bit in I2CSCON is set.
This bit is cleared in all other conditions.
1 I2CSTFE I2C slave FIFO underflow status bit.
This bit goes high if the transmit FIFO is empty when a master requests data from the slave. This bit is asserted at
the rising edge of SCL during the read bit.
This bit is cleared in all other conditions.
0 I2CETSTA I2C slave early transmit FIFO status bit.
If the I2CSETEN bit in I2CSCON is =0, this bit goes high if the slave transmit FIFO is empty. If the I2CSETEN bit in
I2CSCON = 1, this bit goes high just after the positive edge of SCL during the write bit transmission. This bit
asserts once only for a transfer.
This bit is cleared after being read.
I2C Slave Receive, I2CSRX, Register
Name: I2CSRX
Address: 0xFFFF0930
Default value: 0x00
Access: Read only
Function: This 8-bit MMR is the I2C slave receive register.
I2C Slave Transmit, I2CSTX, Register
Name: I2CSTX
Address: 0xFFFF0934
Default value: 0x00
Access: Write only
Function: This 8-bit MMR is the I2C slave transmit
register.
I2C Hardware General Call Recognition, I2CALT, Register
Name: I2CALT
Address: 0xFFFF0938
Default value: 0x00
Access: Read and write
Function: This 8-bit MMR is used with hardware general
calls when the I2CSCON Bit 3 is set to 1. This
register is used in cases where a master is
unable to generate an address for a slave and,
instead, the slave must generate the address for
the master.
I2C Slave Device ID, I2CIDx, Registers
Name: I2CIDx
Addresses: 0xFFFF093C = I2CID0
0xFFFF0940 = I2CID1
0xFFFF0944 = I2CID2
0xFFFF0948 = I2CID3
Default value: 0x00
Access: Read and write
Function: These 8-bit MMRs are programmed with the
I2C bus IDs of the slave. See the I2C Bus
Addresses section for further details.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 96 of 108
I2C Common Registers
I2C FIFO Status, I2CFSTA, Register
Name: I2CFSTA
Address: 0xFFFF094C
Default value: 0x0000
Access: Read and write
Function: This 16-bit MMR contains the status of the
receive/transmit FIFOs in both master and
slave modes.
Table 106. I2CFSTA MMR Bit Designations
Bit Name Description
15:10 Reserved bits.
9
I2CFMTX
Set this bit to 1 to flush the master
transmit FIFO.
8 I2CFSTX Set this bit to 1 to flush the slave transmit
FIFO.
7:6 I2CMRXSTA I2C master receive FIFO status bits.
[00] = FIFO empty.
[01] = byte written to FIFO.
[10] = one byte in FIFO.
[11] = FIFO full.
5:4 I2CMTXSTA I2C master transmit FIFO status bits.
[00] = FIFO empty.
[01] = byte written to FIFO.
[10] = one byte in FIFO.
[11] = FIFO full.
3:2 I2CSRXSTA I2C slave receive FIFO status bits.
[00] = FIFO empty
[01] = byte written to FIFO
[10] = one byte in FIFO
[11] = FIFO full
1:0 I2CSTXSTA I2C slave transmit FIFO status bits.
[00] = FIFO empty.
[01] = byte written to FIFO.
[10] = one byte in FIFO.
[11] = FIFO full.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 97 of 108
SERIAL PERIPHERAL INTERFACE
The ADuC7060/ADuC7061 integrates a complete hardware
serial peripheral interface (SPI) on chip. SPI is an industry
standard, synchronous serial interface that allows eight bits of
data to be synchronously transmitted and simultaneously
received, that is, full duplex up to a maximum bit rate of
5.12 Mbps.
The SPI port can be configured for master or slave operation
and typically consists of four pins: MISO, MOSI, SCLK, and SS.
MISO (MASTER IN, SLAVE OUT) PIN
The MISO pin is configured as an input line in master mode
and an output line in slave mode. The MISO line on the master
(data in) should be connected to the MISO line in the slave
device (data out). The data is transferred as byte wide (8-bit)
serial data, most significant bit first.
MOSI (MASTER OUT, SLAVE IN) PIN
The MOSI pin is configured as an output line in master mode
and an input line in slave mode. The MOSI line on the master
(data out) should be connected to the MOSI line in the slave
device (data in). The data is transferred as byte wide (8-bit)
serial data, most significant bit first.
SCLK (SERIAL CLOCK I/O) PIN
The master serial clock (SCL) synchronizes the data being
transmitted and received through the MOSI SCLK period.
Therefore, a byte is transmitted/received after eight SCLK
periods. The SCLK pin is configured as an output in master
mode and as an input in slave mode.
In master mode, polarity and phase of the clock are controlled
by the SPICON register, and the bit rate is defined in the
SPIDIV register as follows:
)1(2 SPIDIV
f
fUCLK
CLOCKSERIAL +×
=
The maximum speed of the SPI clock is independent of the
clock divider bits.
In slave mode, the SPICON register must be configured with
the phase and polarity of the expected input clock. The slave
accepts data from an external master up to 5.12 Mbps.
In both master and slave modes, data transmit on one edge of
the SCLK signal and sample on the other. Therefore, it is
important that the polarity and phase be configured the same
for the master and slave devices.
SLAVE SELECT (P0.0/SSE) INPUT PIN
In SPI slave mode, a transfer is initiated by the assertion of ASSEE
A
on the P0.0/ASSEE
A pin, which is an active low input signal. The SPI
port then transmits and receives 8-bit data until the transfer is
concluded by deassertion of ASSEE
A. In slave mode, ASSEE
A is always an
input.
In SPI master mode, ASSEE
A is an active low output signal. It asserts
itself automatically at the beginning of a transfer and deasserts
itself upon completion.
CONFIGURING EXTERNAL PINS FOR SPI
FUNCTIONALITY
The SPI pins of the ADuC7060/ADuC7061 device are
represented by the P0[0:3] function of the following pins:
P0.0/ASSEE
A is the slave chip select pin. In slave mode, this pin
is an input and must be driven low by the master. In
master mode, this pin is an output and goes low at the
beginning of a transfer and high at the end of a transfer.
P0.1/SCLK/SCL is the SCLK pin.
P0.2/MISO is the master in, slave out (MISO) pin.
P0.3/MOSI/SDA is the master out, slave in (MOSI) pin.
To configure P0.0 to P0.3 for SPI mode, Bit 0, Bit 4, Bit 8, and
Bit 12 of the GP0CON0 register must be set to 1. Bit 1 of the
GP0CON1 must be set to 1. Note that to write to GP0CON1,
the GP0KEY1 register must be set to 0x7 immediately before
writing to GP0CON1. Also, the GP0KEY2 register must be set
to 0x13 immediately after writing to GP0CON1. The following
code example shows this in detail:
GP0CON0 = BIT0 + BIT4 + BIT8 + BIT12; //Select SPI/I2C alternative function for P0[0...3]
GP0KEY1 = 0x7; //Write to GP0KEY1
GP0CON1 &=~ BIT1; //Select SPI functionality for P0.0 to P0.3
GP0KEY2 = 0x13; //Write to GP0KEY2
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 98 of 108
SPI REGISTERS
The following MMR registers control the SPI interface: SPISTA, SPIRX, SPITX, SPIDIV, and SPICON.
SPI Status Register
SPISTA Register
Name: SPISTA
Address: 0xFFFF0A00
Default value: 0x00000000
Access: Read only
Function: This 32-bit MMR contains the status of the SPI interface in both master and slave modes.
Table 107. SPISTA MMR Bit Designations
Bit Name Description
15:12 Reserved bits.
11 SPIREX SPI receive FIFO excess bytes present. This bit is set when there are more bytes in the receive FIFO than
indicated in the SPIMDE bits in SPICON.
This bit is cleared when the number of bytes in the FIFO is equal to or less than the number in SPIMDE.
10:8 SPIRXFSTA[2:0] SPI receive FIFO status bits.
[000] = receive FIFO is empty.
[001] = 1 valid byte in the FIFO.
[010] = 2 valid bytes in the FIFO.
[011] = 3 valid bytes in the FIFO.
[100] = 4 valid bytes in the FIFO.
7 SPIFOF SPI receive FIFO overflow status bit.
Set when the receive FIFO was already full when new data was loaded to the FIFO. This bit generates an
interrupt except when SPIRFLH is set in SPICON.
Cleared when the SPISTA register is read.
6 SPIRXIRQ SPI receive IRQ status bit.
Set when a receive interrupt occurs. This bit is set when SPITMDE in SPICON is cleared and the required
number of bytes has been received.
Cleared when the SPISTA register is read.
5 SPITXIRQ SPI transmit IRQ status bit.
Set when a transmit interrupt occurs. This bit is set when SPITMDE in SPICON is set and the required number
of bytes has been transmitted.
Cleared when the SPISTA register is read.
4
SPITXUF
SPI transmit FIFO underflow.
This bit is set when a transmit is initiated without any valid data in the transmit FIFO. This bit generates an
interrupt except when SPITFLH is set in SPICON.
Cleared when the SPISTA register is read.
3:1 SPITXFSTA[2:0] SPI transmit FIFO status bits.
[000] = transmit FIFO is empty.
[001] = 1 valid bytes in the FIFO.
[010] = 2 valid bytes in the FIFO.
[011] = 3 valid bytes in the FIFO.
[100] = 4 valid bytes in the FIFO.
0 SPIISTA SPI interrupt status bit.
Set to 1 when an SPI based interrupt occurs.
Cleared after reading SPISTA.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 99 of 108
SPI Receive Register
SPIRX Register
Name: SPIRX
Address: 0xFFFF0A04
Default value: 0x00
Access: Read only
Function: This 8-bit MMR is the SPI receive register.
SPI Transmit Register
SPITX Register
Name: SPITX
Address: 0xFFFF0A08
Default value: 0x00
Access: Write only
Function: This 8-bit MMR is the SPI transmit register.
SPI Baud Rate Selection Register
SPIDIV Register
Name: SPIDIV
Address: 0xFFFF0A0C
Default value: 0x1B
Access: Write only
Function: This 8-bit MMR is the SPI baud rate selection
register.
Table 108. SPIDIV MMR Bit Designations
Bit Description
7:6 Reserved.
5:0
SPI Baud rate setting:
)
SPIDIV
+1
(×
2
f
=
fUCLK
CLOCKSERIAL
SPI Control Register
SPICON Register
Name: SPICON
Address: 0xFFFF0A10
Default value: 0x0000
Access: Read and write
Function: This 16-bit MMR configures the SPI peripheral
in both master and slave modes.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 100 of 108
Table 109. SPICON MMR Bit Designations
Bit Name Description
15:14 SPIMDE SPI IRQ mode bits. These bits are configured when transmit/receive interrupts occur in a transfer.
[00] = transmit interrupt occurs when 1 byte has been transferred. Receive interrupt occurs when one or more bytes
have been received into the FIFO.
[01] = transmit interrupt occurs when 2 bytes have been transferred. Receive interrupt occurs when two or more
bytes have been received into the FIFO.
[10] = transmit interrupt occurs when 3 bytes have been transferred. Receive interrupt occurs when three or more
bytes have been received into the FIFO.
[11] = transmit interrupt occurs when 4 bytes have been transferred. Receive interrupt occurs when the receive FIFO
is full or 4 bytes are present.
13 SPITFLH SPI transmit FIFO flush enable bit.
Set this bit to flush the transmit FIFO. This bit does not clear itself and should be toggled if a single flush is required. If
this bit is left high, then either the last transmitted value or 0x00 is transmitted, depending on the SPIZEN bit. Any
writes to the transmit FIFO are ignored while this bit is set.
Clear this bit to disable transmit FIFO flushing.
12 SPIRFLH SPI receive FIFO flush enable bit.
Set this bit to flush the receive FIFO. This bit does not clear itself and should be toggled if a single flush is required. If
this bit is set, all incoming data is ignored and no interrupts are generated. If set and SPITMDE = 0, a read of the
receive FIFO initiates a transfer.
Clear this bit to disable receive FIFO flushing.
11 SPICONT Continuous transfer enable.
Set by user to enable continuous transfer. In master mode, the transfer continues until no valid data is available in the
transmit register. ASSEE
A is asserted and remains asserted for the duration of each 8-bit serial transfer until the transmit
register is empty.
Cleared by user to disable continuous transfer. Each transfer consists of a single 8-bit serial transfer. If valid data exists
in the SPITX register, then a new transfer is initiated after a stall period of one serial clock cycle.
10 SPILP Loopback enable bit.
Set by user to connect MISO to MOSI and test software.
Cleared by user to be in normal mode.
9 SPIOEN Slave MISO output enable bit.
Set this bit for MISO to operate as normal.
Clear this bit to disable the output driver on the MISO pin. The MISO pin is open drain when this bit is cleared.
8 SPIROW SPIRX overflow overwrite enable.
Set by user, the valid data in the receive register is overwritten by the new serial byte received.
Cleared by user, the new serial byte received is discarded.
7
SPIZEN
SPI transmit zeros when transmit FIFO is empty.
Set this bit to transmit 0x00 when there is no valid data in the transmit FIFO.
Clear this bit to transmit the last transmitted value when there is no valid data in the transmit FIFO.
6 SPITMDE SPI transfer and interrupt mode.
Set by user to initiate transfer with a write to the SPITX register. Interrupt occurs only when the transmit FIFO is empty.
Cleared by user to initiate transfer with a read of the SPI register. Interrupt occurs only when the receive FIFO is full.
5 SPILF LSB first transfer enable bit.
Set by user, the LSB is transmitted first.
Cleared by user, the MSB is transmitted first.
4
SPIWOM
SPI wired or mode enable bit.
Set to 1 to enable the open-drain data output enable. External pull-ups are required on data out pins.
Clear for normal output levels.
3 SPICPO Serial clock polarity mode bit.
Set by user, the serial clock idles high.
Cleared by user, the serial clock idles low.
2 SPICPH Serial clock phase mode bit.
Set by user, the serial clock pulses at the beginning of each serial bit transfer.
Cleared by user, the serial clock pulses at the end of each serial bit transfer.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 101 of 108
Bit Name Description
1 SPIMEN Master mode enable bit.
Set by user to enable master mode.
Cleared by user to enable slave mode.
0 SPIEN SPI enable bit.
Set by user to enable the SPI.
Cleared by user to disable the SPI.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 102 of 108
GENERAL-PURPOSE I/O
The ADuC7060/ADuC7061 features up to 16 general-purpose
bidirectional input/output (GPIO) pins. In general, many of the
GPIO pins have multiple functions that are configurable by user
code. By default, the GPIO pins are configured in GPIO mode. All
GPIO pins have an internal pull-up resistor with a drive capability
of 1.6 mA.
All I/O pins are 3.3 V tolerant, meaning that the GPIOs support
an input voltage of 3.3 V.
When the ADuC7060/ADuC7061 enters power-saving mode,
the GPIO pins retain their state.
The GPIO pins are grouped into three port buses.
Table 110 lists all the GPIO pins and their alternative functions.
A GPIO pin alternative function can be selected by writing to
the correct bits of the GPxCON register.
Table 110. GPIO Multifunction Pin Descriptions
Port
Configuration via GPxCON Including GP0CON0
Pin Mnemonic 00 01
0 P0.0/SS GPIO SS (SPI slave select).
P0.1/SCLK/SCL GPIO SCLK/SCL (serial clock/SPI clock).
P0.2/MISO
GPIO
MISO (SPImaster in/slave out).
P0.3/MOSI/SDA GPIO MOSI (SPImaster out/slave in).
P0.4/IRQ0/PWM1 GPIO/IRQ0 PWM1 (PWM Output 1).
P0.5/CTS GPIO CTS. UART clear to send pin.
P0.6/RTS GPIO RTS. UART request to send pin.
1 P1.0/IRQ1/SIN/T0 GPIO/IRQ1 SIN (serial input).
P1.1/SOUT GPIO SOUT (serial output).
P1.2/SYNC GPIO PWM sync (PWM sync input pin).
P1.3/TRIP GPIO PWM trip (PWM trip input pin).
P1.4/PWM2 GPIO PWM2 (PWM Output 2).
P1.5/PWM3 GPIO PWM3 (PWM Output 3).
P1.6/PWM4 GPIO PWM4 (PWM Output 4).
2 P2.0/IRQ2/PWM0/EXTCLK GPIO/IRQ2/EXTCLK PWM0 (PWM Output 0).
P2.1/IRQ3/PWM5 GPIO/IRQ3 PWM5 (PWM Output 5).
GPxCON REGISTERS
GPxCON are the Port x (where x is 0, 1, or 2) control registers, which select the function of each pin of Port x as described in Table 112.
Table 111. GPxCON Registers
Name Address Default Value Access
GP0CON0 0xFFFF0D00 0x00000000 R/W
GP1CON 0xFFFF0D04 0x00000000 R/W
GP2CON 0xFFFF0D08 0x00000000 R/W
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 103 of 108
Table 112. GPxCON MMR Bit Designations
Bit Description
31:30 Reserved.
29:28 Reserved.
27:26 Reserved.
25:24 Selects the function of the P0.6/RTS and P1.6/PWM pins.
23:22 Reserved.
21:20 Selects the function of the P0.5/CTS and P1.5/PWM3 pins.
19:18 Reserved.
17:16 Selects the function of the P0.4/IRQ0/PWM1 and
P1.4/PWM2 pins.
15:14
Reserved.
13:12 Selects the function of the P0.3/MOSI/SDA and P1.3/TRIP
pins.
11:10 Reserved.
9:8 Selects the function of the P0.2/MISO and P1.2/SYNC pins.
7:6 Reserved.
5:4 Selects the function of the P0.1/SCLK/SCL, P1.1/SOUT,
and P2.1/IRQ3/PWM5 pins.
3:2 Reserved.
1:0 Selects the function of the P0.0/SS, P1.0/IRQ1/SIN/T0,
P2.0/IRQ2/PWM0/EXTCLK pins.
GPxDAT REGISTERS
GPxDAT are Port x configuration and data registers. They con-
figure the direction of the GPIO pins of Port x, set the output
value for the pins that are configured as output, and store the
input value of the pins that are configured as input.
Table 113. GPxDAT Registers
Name Address Default Value Access
GP0DAT 0xFFFF0D20 0x000000XX R/W
GP1DAT 0xFFFF0D30 0x000000XX R/W
GP2DAT 0xFFFF0D40 0x000000XX R/W
Table 114. GPxDAT MMR Bit Designations
Bit Description
31:24 Direction of the data.
Set to 1 by user to configure the GPIO pin as an output.
Cleared to 0 by user to configure the GPIO pin as an input.
23:16 Port x data output.
15:8 Reflect the state of Port x pins at reset (read only).
7:0 Port x data input (read only).
GPxSET REGISTERS
GPxSET are data set Port x registers.
Table 115. GPxSET Registers
Name Address Default Value Access
GP0SET 0xFFFF0D24 0x000000XX W
GP1SET 0xFFFF0D34 0x000000XX W
GP2SET 0xFFFF0D44 0x000000XX W
Table 116. GPxSET MMR Bit Designations
Bit Description
31:24 Reserved.
23:16 Data Port x set bit.
Set to 1 by user to set bit on Port x; also sets the
corresponding bit in the GPxDAT MMR.
Cleared to 0 by user; does not affect the data output.
15:0 Reserved.
GPxCLR REGISTERS
GPxCLR are data clear Port x registers.
Table 117. GPxCLR Registers
Name Address Default Value Access
GP0CLR 0xFFFF0D28 0x000000XX W
GP1CLR 0xFFFF0D38 0x000000XX W
GP2CLR 0xFFFF0D48 0x000000XX W
Table 118. GPxCLR MMR Bit Designations
Bit Description
31:24 Reserved.
23:16 Data Port x clear bit.
Set to 1 by user to clear the bit on Port x; also clears
the corresponding bit in the GPxDAT MMR.
Cleared to 0 by user; does not affect the data output.
15:0 Reserved.
GPxPAR REGISTERS
The GPxPAR registers program the parameters for Port 0, Port 1,
and Port 2. Note that the GPxDAT MMR must always be written
after changing the GPxPAR MMR. Note that it is not possible to
disable the internal pull-up resistor on P0.2.
Table 119. GPxPAR Registers
Name Address Default Value Access
GP0PAR
0xFFFF0D2C
0x00000000
R/W
GP1PAR 0xFFFF0D3C 0x00000000 R/W
GP2PAR 0xFFFF0D4C 0x00000000 R/W
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 104 of 108
Table 120. GPxPAR MMR Bit Designations
Bit Name Description
31:15 Reserved.
23:16 GPL[7:0] General I/O port pin functionality lock
registers.
GPL[7:0] = 0, normal operation.
GPL[7:0] = 1, for each GPIO pin, if this bit is
set, writing to the corresponding bit in
GPxCON or GPxDAT register bit has no
effect.
15:8 GPDS[7:0] Drive strength configuration. This bit is
configurable.
GPDS[x] = 0, maximum source current is 2 mA.
GPDS[x] = 1, maximum source current is 4 mA.
7:0
GPPD[7:0]
Pull-Up Disable Port x[7:0].
GPPD[x] = 0, pull-up resistor is active.
GPPD[x] = 1, pull-up resistor is disabled.
GP0CON1 Control Registers
The GP0CON1 write values are as follows: GP0KEY1 = 0x7,
GP0CON1 = user value, and GP0KEY2 = 0x13.
Name: GP0CON1
Address: 0xFFFF0468
Default value: 0x00
Access: Read and write
Function: This register controls the P0.0, P0.1, P0.2, and
P0.3 functionality of the multifunction GPIO
pins.
Table 121. GP0CON1 Write Sequence
Name Value
GP0KEY1 0x7
GP0CON1 User value
GP0KEY2 0x13
Table 122. GP0CON1 MMR Bit Designations
Bit Name Description
7:2 Reserve
d
These bits must always be set to 0.
1 SPII2CS
EL
This bit configures the P0.0 to P0.3 functions
in I2C or SPI mode. Note that Bit 0 of GP0CON1
must be set to 0 for this bit to work.
To select the P0.0, P0.1, P0.2, and P0.3
functions in SPI mode, clear this bit to 0.
To select the P0.0, P0.1, P0.2, and P0.3
functions in I2C mode, set this bit to 1.
This bit is cleared by default.
0 ADCSEL This bit configures the P0.0 to P0.3 functions
as GPIO pins or as ADC input pins.
To enable P0.0, P0.1, P0.2 and P0.3 functions
as ADC inputs, set this bit to 1.
To enable P0.0, P0.1, P0.2, and P0.3 functions
as digital I/O, clear this bit to 0.
This bit is cleared by default.
Name GP0KEY1
Address: 0xFFFF0464
Default value: 0xXXXX
Access: Write only
Function: When writing to GP0CON1, the value of 0x07
must be written to this register in the
instruction immediately before writing to
GP0CON1.
Name: GP0KEY2
Address: 0xFFFF046C
Default value: 0xXXXX
Access: Write only
Function: When writing to GP0CON1, the value of 0x13
must be written to this register in the instruction
immediately after writing to GP0CON1.
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 105 of 108
HARDWARE DESIGN CONSIDERATIONS
POWER SUPPLIES
The ADuC7060/ADuC7061 operational power supply voltage
range is 2.375 V to 2.625 V. Separate analog and digital power
supply pins (AVDD and DVDD, respectively) allow AVDD to
be kept relatively free of noisy digital signals often present on
the system DVDD line. In this mode, the part can also operate
with split supplies; that is, it can use different voltage levels for
each supply. For example, the system can be designed to
operate with a DVDD voltage level of 2.6 V, whereas the AVDD
level can be at 2.5 V or vice versa. A typical split supply
configuration is shown in Figure 28.
ADuC7060/
ADuC7061
0.1µF
ANALOG
SUPPLY
10µF
AVDD
DVDD
DGND
AGND
0.1µF
+
DIGITAL
SUPPLY
10µF
+
07079-022
Figure 28. External Dual Supply Connections
As an alternative to providing two separate power supplies, the
user can reduce noise on AV DD by placing a small series
resistor and/or ferrite bead between AVDD and DVDD, and then
decoupling AVDD separately to ground. An example of this
configuration is shown in Figure 29. With this configuration,
other analog circuitry (such as op amps, voltage reference, and
others) can be powered from the AVDD supply line as well.
ADuC7060/
ADuC7061
0.1µF
ANALOG
SUPPLY
10µF
AVDD
DVDD
DGND
AGND
0.1µF
DIGITAL
SUPPLY BEAD
10µF
+
07079-023
Figure 29. External Single Supply Connections
Notice that in both Figure 28 and Figure 29, a large value (10 µF)
reservoir capacitor sits on DVDD, and a separate 10 µF
capacitor sits on AVDD. In addition, local, small value (0.1 µF)
capacitors are located at each AVDD and DVDD pin of the chip.
As per standard design practice, be sure to include all of these
capacitors and ensure that the smaller capacitors are close to the
AVDD pin with trace lengths as short as possible. Connect the
ground terminal of each of these capacitors directly to the
underlying ground plane.
Note that the analog and digital ground pins on the ADuC7060/
ADuC7061 must be referenced to the same system ground
reference point at all times.
Finally, note that, when the DVDD supply reaches 1.8 V, it must
ramp to 2.25 V in less than 128 ms. This is a requirement of the
internal power-on reset circuitry.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 106 of 108
OUTLINE DIMENSIONS
3.65
3.50 SQ
3.35
FOR PROPER C ONNECTI ON O F
THE EXPOSED PAD, REFER TO
THE P IN CO NFI GURATION AND
FUNCTI ON DES CRIPTIONS
SECTION OF THIS DATA SHEET.
COM P LI AN T TO JE DE C S TANDARDS MO-220-VH HD- 2
32
98
1
25
24
17 16
COPLANARITY
0.08
3.50 REF
0.50
BSC
PIN 1
INDICATOR
PIN 1
INDICATOR
0.30
0.25
0.18 0.20 REF
12° M AX 0.80 MAX
0.65 TY P
1.00
0.85
0.80 0. 05 MA X
0.02 NOM
SEATING
PLANE
0.50
0.40
0.30
5.00
BSC SQ
4.75
BSC SQ
0.60 MAX
0.60 MAX
0.25 M IN
04-13-2012-A
TOP VIEW
EXPOSED
PAD
BOT TOM VIEW
Figure 30. 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
5 mm × 5 mm Body, Very Thin Quad
(CP-32-4)
Dimensions shown in millimeters
COM PLIANT TO J E DE C STANDARDS MO-220- VK KD- 2
1
48
12
13
37
36
24
25
4.25
4.10 SQ
3.95
0.50
0.40
0.30
0.30
0.23
0.18
0.80 MAX
0.65 TY P
5.50 RE F
COPLANARITY
0.08
0.20 RE F
1.00
0.85
0.80 0.05 MAX
0.02 NOM
SEATING
PLANE
12° M AX
TOP VIEW BOTTOM VIEW
0.60 MAX
0.60 MAX
PIN 1
INDICATOR 0.50
REF
PIN 1
INDICATOR
0.25 MIN
7.10
7.00 SQ
6.90
6.85
6.75 SQ
6.65
06-06-2012-A
FOR PROPER C ONNECTI ON O F
THE EXPOSED PAD, REFER TO
THE P IN CO NFI GURATION AND
FUNCTI ON DES CRIPTIONS
SECTION OF THIS DATA SHEET.
EXPOSED
PAD
Figure 31. 48-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
7 mm × 7 mm Body, Very Thin Quad
(CP-48-3)
Dimensions shown in millimeters
Data Sheet ADuC7060/ADuC7061
Rev. E | Page 107 of 108
COMP LI ANT TO JEDE C S TANDARDS MS-026-BBC
TOP VIEW
(PINS DOWN)
1
12 13 25
24
36
37
48
0.27
0.22
0.17
0.50
BSC
LEAD P ITCH
1.60
MAX
0.75
0.60
0.45
VIEW A
PIN 1
0.20
0.09
1.45
1.40
1.35
0.08
COPLANARITY
VIEW A
RO TAT ED 90° CCW
SEATING
PLANE
3.5°
0.15
0.05
9.20
9.00 S Q
8.80
7.20
7.00 SQ
6.80
051706-A
Figure 32. 48-Lead Low Profile Quad Flat Package [LQFP]
(ST-48)
Dimensions shown in millimeters
ORDERING GUIDE
Model1 Temperature Range Package Description
Package
Option
Ordering
Quantity
ADuC7060BCPZ32 −40°C to +125°C 48-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-48-3
ADuC7060BCPZ32-RL −40°C to +125°C 48-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-48-3 2,500
ADuC7060BSTZ32 −40°C to +125°C 48-Lead Low Profile Quad Flat Package [LQFP] ST-48
ADuC7060BSTZ32-RL −40°C to +125°C 48-Lead Low Profile Quad Flat Package [LQFP] ST-48 2,000
ADuC7061BCPZ32 −40°C to +125°C 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-32-4
ADuC7061BCPZ32-RL −40°C to +125°C 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-32-4 5,000
EVAL-ADuC7060QSPZ ADuC7060 Quick Start Plus Development System
EVAL-ADuC7061MKZ ADuC7061 Quick Start Evaluation System
1 Z = RoHS Compliant Part.
ADuC7060/ADuC7061 Data Sheet
Rev. E | Page 108 of 108
NOTES
©20092014 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D07079-0-10/14(E)